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Abstract

Automatically generating security patches provides proactive protection against ex-
ploitation of known vulnerabilities by malicious users. The problem of automatic
patching is a long-standing requirement in practice, which is not limited to gen-
erating a fix for the identified software security vulnerability but may also require
generalizing the fix to the extent that it can be ported to other similar variants of
the vulnerability that exist in different software systems.

This thesis introduces a series of cohesive techniques tightly coupled towards
the goal of generating security patches for identified software security vulnerabili-
ties. First, we study the impeding challenges in trusted program repair, specifically
addressing the trustworthiness of auto-generated patches. Considering the insights
gained from our study, we propose "compilation-free program repair" to speedup the
efficiency of program repair. Third, we propose a novel program repair technique
“concolic program repair” that integrates a user-provided program-specification to
guide program repair to find the correct patch while efficiently navigating a large
search-space. In doing so, we also provide additional guarantees for the correctness
of the generated patches by generating additional test-cases. Fourth, inspired by
program synthesis technique, we propose a novel transformation rule synthesis algo-
rithm that can produce properly generalized transformation rules to automatically
backport trusted patches to older versions of the same software. Last, we propose
a code transplantation technique to repair semantically equivalent programs that
exhibit potential for a similar variant of the identified vulnerability.

We perform a comprehensive set of experiments on reported software security
vulnerabilities in real-world applications inclusive of the Linux kernel project, sub-
jects from Google’s Open-source-systems (OSS) Fuzz framework and other popu-
lar large-scale software applications. Our experiments showed that the proposed
techniques advance the state of the art program repair to address the challenges
in generating security patches for software security vulnerabilities. Our proposed
techniques should serve a long-standing need in practice.

ix



List of Tables

2.1 Illustration of symbolic execution . . . . . . . . . . . . . . . . . . . . . 20

3.1 Illustrative test-suite for patch-overfitting problem . . . . . . . . . . . . 29
3.2 List of questions from the developer survey . . . . . . . . . . . . . . . . 32
3.3 Experiment subjects for quantitative evaluation of APR . . . . . . . . 42
3.4 Experiment configurations for quantitative evaluation of APR . . . . . 42
3.5 Quantitative evaluation of APR results for the various configurations . 44
3.6 Average exploration ratio |PExpl| for EC1 and EC2. . . . . . . . . . . . 45

4.1 Experiment subjects and their details . . . . . . . . . . . . . . . . . . . 63
4.2 Experiment results for comparative analysis of CFR vs recompilation

techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Experiment results with multiple repair integration . . . . . . . . . . . 67
4.4 Experiment results with multiple test-cases . . . . . . . . . . . . . . . . 68

5.1 Comparison of CEGIS vs CPR . . . . . . . . . . . . . . . . . . . . . . 94
5.2 Comparison of CPR with repair tools . . . . . . . . . . . . . . . . . . 95
5.3 Performance of CPR on ManyBugs benchmark . . . . . . . . . . . . 96
5.4 Performance of CPR for logical errors in SV-COMP . . . . . . . . . . 97
5.5 Impact of different parameter ranges on the repair success of CPR . . 98
5.6 Path exploration of CPR . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 Developer effort in backporting patches for the Linux kernel project . . 107
6.2 Patch size distribution in FixMorph dataset . . . . . . . . . . . . . . 121
6.3 Results of backporting CVE tagged bug fixes . . . . . . . . . . . . . . . 123
6.4 Effectiveness of FixMorph in backporting kernel patches . . . . . . . 124
6.5 Quantitative comparison of FixMorph with existing tools . . . . . . . 125

x



6.6 Qualitative comparison of FixMorph with existing tools . . . . . . . . 125

7.1 Classes of patch transplantation . . . . . . . . . . . . . . . . . . . . . . 137
7.2 Annotations used in the Patch Transplantation Problem . . . . . . . . 143
7.3 Experiment subjects used in PatchWeave evaluation . . . . . . . . . . . 159
7.4 Summary of PatchWeave experiment results . . . . . . . . . . . . . . . 161
7.5 Effectiveness of patch localization in PatchWeave . . . . . . . . . . . . 164
7.6 PatchWeave comparison with program repair techniques . . . . . . . . 166
7.7 PatchWeave comparison with Transplantation Techniques . . . . . . . . 170
7.8 PatchWeave comparison with Syntactic Patch Transplantation . . . . . 172

xi



List of Figures

1.1 Life-cycle of a typical vulnerability . . . . . . . . . . . . . . . . . . . . 5

2.1 Comparison of symbolic execution and concrete execution. . . . . . . . 18
2.2 Example code for Symbolic Execution . . . . . . . . . . . . . . . . . . 19

3.1 Illustrative example for patch-overfitting problem . . . . . . . . . . . . 29
3.2 Responses for Q6.1What is your (main) role in the software development

process? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Responses for Q6.2 How long have you worked in software development? 33
3.4 Results for the questions with the 5-point Likert Scale (103 responses). 34
3.5 Cumulative illustration of the responses for Q1.2How many auto-generated

patches would you be willing to review before losing trust/interest in the
technique? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Responses for Q3.2 Which of the following additional artifacts will in-
crease your trust? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Responses for Q5.1 Which of the following information (i.e., potential
side-products of APR) would be helpful to validate the patch? . . . . . . 39

3.8 Responses for Q5.3 Which of the following information (i.e., potential
side-products of APR) would help you to fix the problem yourself (without
using generated patches)? . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Average time spent for recompilation . . . . . . . . . . . . . . . . . . . 54
4.2 An illustration of patch interpretation . . . . . . . . . . . . . . . . . . . 56
4.3 CFR Workflow Illustration . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Throughput of Darjeeling and Prophet . . . . . . . . . . . . . . . . . . 66

5.1 Illustration of Concolic Program Repair . . . . . . . . . . . . . . . . . 75

xii



5.2 CVE-2016-3623: Divide by Zero in LibTIFF v4.0.6 . . . . . . . . . . . 75

6.1 The distribution of backported patches per release . . . . . . . . . . . . 105
6.2 Cumulative distribution of patch backporting time . . . . . . . . . . . 106
6.3 Different types of changes in backporting a patch . . . . . . . . . . . . 108
6.4 Sample backporting task . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.5 Domain-specific language in FixMorph for transformation rules . . . . 114

7.1 The Automated Patch Transplantation Problem . . . . . . . . . . . . . 130
7.2 Overflow error in OpenJPEG 1.5.1 . . . . . . . . . . . . . . . . . . . . 131
7.3 Patches generated using Automated Program Repair . . . . . . . . . . 133
7.4 Variable mapping between OpenJPEG and JasPer . . . . . . . . . . . . 134
7.5 Patch generated using transplantation . . . . . . . . . . . . . . . . . . 136
7.6 Example for Class-I: CVE-2018-14526 . . . . . . . . . . . . . . . . . . . 139
7.7 Example for Class-II: CVE-2006-4806 . . . . . . . . . . . . . . . . . . . 140
7.8 Example for Type III: CVE-2013-4231 . . . . . . . . . . . . . . . . . . 141
7.9 Example for Class-IV: CVE-2016-9389 . . . . . . . . . . . . . . . . . . 141
7.10 Illustration of divergent points for Pa, Pb, Pc . . . . . . . . . . . . . . . 143
7.11 The overall workflow for PatchWeave . . . . . . . . . . . . . . . . . . . 144
7.12 Patch extraction phase of PatchWeave . . . . . . . . . . . . . . . . . . 148
7.13 AST Node Mapping in Patch Adaptation Phase . . . . . . . . . . . . . 155
7.14 Comparison of transplantation vs APR patch for bug-1 . . . . . . . . . 168

xiii



Publications Appeared
Following lists the publications that have been created along this thesis work and
that served as basis for this thesis.

• Ridwan Shariffdeen, Shin Hwei Tan, Mingyuan Gao, Abhik Roychoud-
hury. "Automated Patch Transplantation". ACM Transactions on Software
Engineering and Methodology (TOSEM), 30(1), pages 1-36, 2021.

• Ridwan Shariffdeen, Xiang Gao, Gregory J Duck, Shin Hwei Tan, Ju-
lia Lawall, Abhik Roychoudhury. "Automated Patch Backporting in Linux
(Experience Paper)". In the Proceedings of the 30th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis (ISSTA) 2021. [joint
first-author with Xiang Gao]

• Ridwan Shariffdeen, Yannic Noller, Lars Grunske, Abhik Roychoudhury.
"Concolic Program Repair". In the Proceedings of the 42nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI)
2021. [joint first-author with Yannic Noller]

• Yannic Noller,Ridwan Shariffdeen, Xiang Gao, Abhik Roychoudhury. "Trust
Enhancement Issues in Program Repair". In the Proceedings of the IEEE/ACM
44th International Conference on Software Engineering (ICSE) 2022. [joint
first-author with Yannic Noller]

• Ridwan Shariffdeen, Gregory J Duck, Jiaqi Tan, Abhik Roychoudhury.
"Compilation-free Program Repair". In the Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering (ASE) 2022.
[submitted]

xiv



CHAPTER 1. INTRODUCTION

Chapter 1

Introduction
Software developers must often face the unpleasant discoveries of unexpected or
undesirable behaviors known as bugs. One inevitable side-effect of such bugs is the
existence of vulnerabilities that can be exploited by malicious users for their own
advantage e.g. disclose confidential information. Software vulnerabilities pose seri-
ous security risks to computer systems. Heartbleed vulnerability (CVE-2014-0160)
is an infamous example of such a software vulnerability that could lead to disclo-
sure of passwords and private keys handled by applications that use OpenSSL [32].
A special characteristic of a software security vulnerability is the wider range of
applicability in the software ecosystem. Furthermore, current practices in fixing
software security vulnerabilities involve providing a patch to the latest version(s)
of the software and require the users to upgrade, letting thousands of dependent
packages of older versions exposed to the vulnerability [28]. Due to various reasons
such as dependency-locks in software systems, there exists a barrier to attain the
correct fix to some versions of the software. For example, the search for Heartbleed
vulnerable devices conducted by Shodan in March 2016 [124], returned 237,539 re-
sults indicating many devices remained affected by this vulnerability years after a
publicly available patch was provided. Most of the affected devices that were re-
ported as vulnerable, used old versions of OpenSSL (1.0.1 - 1.0.1f), this may be due
to version lock-in. In order to prevent this vulnerability exploitation, users were
requested to upgrade to the latest version of OpenSSL in which the issue was fixed.
But, upgrading a dependent software is not a trivial task and in some cases it can
be difficult due to tight-coupling of the specific version in use.

A vulnerability in a software system poses a significant threat to the security and
reliability not only for the said software but also for the whole software ecosystem.
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The same vulnerability can exist in other forms and facades in different systems
due to the reuse of source code, libraries and artifacts at higher levels of abstraction
(i.e. JPEG 2000 standard, SSL/TLS protocols). With the advent of component-
oriented programming, the security issues of code reuse is an important aspect that
requires analysis as well as maintenance strategies to preserve the security of all
systems, not just the software where the vulnerability was detected. One of the
recently disclosed vulnerabilities that affected almost all Linux, iOS, and Android
devices is the KRACK [130] vulnerability. Even though the original program was
fixed, dependent software required days to merge the upstream fix due to variances
between the original program and the integrated program [129]. Hence, any attacker
who was exploiting the KRACK vulnerability had an advantage of a few days to
launch their attacks targeting not-yet-patched systems.

Debugging is a costly and time-consuming activity, especially when considering
large projects of thousands of lines that have been developed for years and by several
programmers. Furthermore, even when the origin of a bug is correctly identified,
a fix can be nontrivial. Hence, fixing an existing security vulnerability itself is
often a difficult task that requires a deep understanding of the semantics, context,
and environment of the application [121]. Another challenge in fixing software
security vulnerabilities is the propagation of the fix to prevent all similar variants
of the vulnerability that can be exploited. Due to the intertwined nature of a
patch to a software security vulnerability and the vulnerability itself, the existence
of a patch reveals the existence of a vulnerability. Hence, any un-patched version
of the software is exposed to be targeted by malicious users. A cohesive set of
techniques are required in-order to completely mitigate the threat of an identified
software security vulnerability. More precisely, once a software security vulnerability
is identified, all software that is affected by the defect should be repaired at the same
time or prior to the publication of the existence of the vulnerability.

The tedious task of fixing bugs is not limited to the security domain. To re-
lieve the burden of fixing bugs, many techniques have been previously proposed for
automated program repair such as genetic programming [68, 155], semantic analy-
sis based repair techniques [92, 105, 137, 91, 161, 138, 136, 78], machine learning
based techniques [79] and hybrid approaches [69]. Although existing automated
repair techniques are capable of fixing some of the software errors in real-world
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applications, these techniques are often ineffective in patching software security
vulnerabilities [138, 110].

Furthermore, once a patch is discovered that can fix an instance of the identified
software security vulnerability, the task remains to generalize the patch and apply to
all other instances of the vulnerability. In practice, developers manually port [111,
112] fixes selectively from one program to another program. The program can be
of the same project in different versions or completely different projects that share
a higher-abstraction such as a standard or a protocol. When porting code from
one context to another, semantics of the ported code often change due to differ-
ences in the surrounding contexts. Developers may overlook such subtle differences,
inadvertently creating a porting error [112, 111].

This thesis focuses on alleviating the problem of generating patches for security
vulnerabilities, which can help developers to quickly patch identified security vul-
nerabilities and reduce the exposure time for exploitation not only for the instance
that was reported but to other similar variants of the identified vulnerability.

1.1 Motivation
The security of computer systems are severely affected by the existence of vulnera-
bilities and threaten the IT infrastructure of many organizations. Among different
kind of vulnerabilities, certain vulnerabilities affect more than one system, where
the issue lies in a shared library, incorrect implementation of a protocol or simply
an error in a standard itself. For instance, previously disclosed Heartbleed [128]
and Shellshock [131] vulnerabilities that affected almost any software that used
OpenSSL libraries and a vulnerability in the server message block (SMB) protocol
exploited by the WannaCry ransomware [24] have affected a wide range of sys-
tems and millions of users worldwide. One of the recently disclosed security issues
known as ZipSlip [132] is a widespread critical archive extraction vulnerability, al-
lowing attackers to write arbitrary files on the system, typically resulting in remote
command execution. The vulnerability has been found in multiple ecosystems, in-
cluding JavaScript, Ruby, .NET and Go, but is especially prevalent in Java, where
there is no central library offering high-level processing of archive (e.g. zip) files.
The lack of such a library led to vulnerable code snippets being hand-crafted and
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shared among developer communities such as StackOverflow. KRACK [130] is an-
other instance, where the protocol itself has flaws in its implementation and lead to
one of the deadliest security issue found in recent times. The weaknesses are in the
Wi-Fi standard itself, and not in individual products or implementations. There-
fore, any correct implementation of WPA2 was affected. To prevent the attack,
users were forced to update affected products as soon as security updates become
available. During the initial research, it was discovered that Android, Linux, Ap-
ple, Windows, OpenBSD, MediaTek, Linksys, and others, are all affected by some
variant of the attacks. Even though the original patch was released in September
2017, it took couple of weeks for many vendors to integrate the patch into their
stack [129], providing enough exposure window for malicious users to target such
instances.

Despite recent advancements in detecting software security vulnerabilities [106,
56, 14, 107, 108], attacks against computer software are reported on an almost daily
basis. Software systems that are developed, deployed and used over years contain
significant security weaknesses, where over 90% of security incidents reported are
from software defects [149]. According to [27] and [162], one of the major causes of
security incidents and breaches can be attributed to the exploitable vulnerabilities
in software. Once a vulnerability is exploited by attackers, companies and orga-
nizations may suffer from significant financial loss as well as irreparable damage
to their reputation [123]. Delay to fix such issues have caused significant cost up
to 200 times as much as early correction [12]. For example, one of the recently
disclosed and widely exploited vulnerabilities known as EternalBlue actually in-
volved CVE-2017-0143 to 48, a family of vulnerabilities related to the Microsoft
SMBv1 server protocol that was used in certain Windows versions. The infamous
WannaCry ransomware outbreak in 2017 exploited this N-day vulnerability in un-
patched computers. Interestingly, 3 years after the first outbreak, WannaCry was
still the most detected malware family in 2020, and according to Shodan, more
than 650,000 internet devices remain vulnerable to it. The same vulnerability was
influential behind the NotPetya cyberattack across the world, which caused more
than US$ 10 billion in estimated damage [150]. More recently, one of the most se-
vere vulnerability reported in Log4j, an open-source logging library commonly used
by thousands of apps and services across the internet and its part of the Apache
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Logging Services, a project of the Apache Software Foundation. The critical vul-
nerability exposed applications to a remote-code-execution attack[49]. Within just
a few hours, vast number of attempts at exploiting Log4j vulnerabilities(s) were
reported by several threat monitoring services, indicating malicious users are quick
to learn and attack at newly found vulnerabilities.

It is important to repair identified vulnerabilities as quickly as possible and take
the necessary steps to minimize the impact. One of the crucial steps towards defense
against identified vulnerabilities is to integrate security patches into one’s system
as quickly as possible.

1.2 Problem Formulation
Figure 1.1 depicts the life-cycle of a vulnerability from the early stages of discovery
to the later stages of remedying by applying a patch. Two distinctive stages in
the life-cycle of a vulnerability are important for our work, the disclosure time and
the patch time (i.e. the time of patch availability). Note that the sequence of the
exploit time, disclosure time and patch time are not fixed. This thesis aims to
reduced the window of exposure by automatically generating patches for software
security vulnerabilities.

Figure 1.1: Life-cycle of a typical vulnerability

Distinctive stages in time divide the life-cycle of a vulnerability into several phases.

The disclosure time of a vulnerability is defined as the first date information of
the vulnerability is publicly released. Similarly, the time of a patch availability is
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defined as the first date the vendor of the software releases a patch that provides
protection against the exploitation of the vulnerability. The time duration where
the vulnerability is disclosed and a patch is released by the vendor is known as
the window of exposure. The window of exposure is where the developers of the
software has control and responsibility, hence the goal of the vendor is to minimize
this window to zero days. Thus to minimize the impact of the vulnerability, a
patch should be released by the vendor on the same day where the vulnerability is
disclosed.

While software vendors race towards patching vulnerabilities in their software,
there are two additional problems that entails by generating a patch. The inter-
twined relation between a patch for a vulnerability and the vulnerability itself, is
that the existence of a patch reveals the existence of a vulnerability. Hence, any
software that has semantic similarities with the original software where the vulner-
ability was identified, will be exposed to the risk of having a similar vulnerability
that is un-patched.

• Any system that is dependent of an older version of the software which the
vulnerability was fixed, will trigger a window of exposure starting from the
patch time of the latest version of the software. A recent study find there
exists thousands of systems that depend on older versions of a software that
was exposed to a vulnerability for which a fix is available only in the latest
version [28].

• Due to semantic similarities there may exist similar software security vulnera-
bilities occurring in different software systems, which are known as recurring
vulnerabilities [106]. Hence, some software will be at the risk of been un-
patched to a known vulnerability that was disclosed as a result of a patch for
a semantically similar software.

The problem we address in this thesis is the problem of generating security
patches, that minimizes the impact of a disclosure of a vulnerability. Since, the
patch itself is a form of disclosure of a vulnerability we also need to be able to
adapt a security patch generated for the identified vulnerability to all other seman-
tically similar programs that may exhibit the potential for exploitation of a similar
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vulnerability. In this work, we aim to improve the capabilities of automated pro-
gram repair to alleviate the problem of generating security patches. Such patches
provide protection against exploitation of identified vulnerabilities. As discussed in
previous sections, fixing a software security vulnerability itself is a time-consuming
and difficult task. In addition, generating security patches for all variants of the
vulnerability requires significant time and effort. This is particularly challenging
for enterprise software vendors that consume thousands of Free and Open-Source
Software(FOSS) components and offer more than a decade of support and security
fixes for their applications.

1.3 Challenges
First challenge for the problem of automatically patching vulnerability is to effi-
ciently and quickly generate patches in a time-frame less than 24 hours. Program
repair techniques should be able to explore a large search-space efficiently, and gen-
erate high-quality patches in a fixed amount of time. Given the potential usage of
automated program repair to alleviate the burden of generating security patches
from software developers, improving the efficiency of existing repair technology is
crucial.

Second challenge is the trustworthiness of auto-generated patches perceived by
software developers. Albeit the ability to efficiently generate a patch, if the auto-
mated repair system cannot meet the trust requirements deemed by the software
developer, the generated patch will not be applied. One of the difficulty in providing
necessary guarantees for the fix, is due to the inherent problem of patch overfitting,
where the patched program fails for test cases not provided by the given test-suite
[69, 110]. This is an undesirable property in the context of fixing software security
vulnerabilities.

The third challenge is to generalize the patch and adopt the fix to be applica-
ble to older versions of the software, which most likely exhibits a similar variant
of the identified error. The sheer complexity of the patches, the diversity of the
transformations involved, and the absence of test cases (provided test-case may not
be applicable to older versions) as specification pose additional challenges to port
a patch across different versions of the same software.
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The fourth challenge is to repair other similar security vulnerabilities in a soft-
ware ecosystem, the patch should be applied in other similar software which may
exhibit potential for exploitation due to semantic similarities. The challenge in
incorporating patches from different sources is to be able to adapt the code modifi-
cations involved. Often, shared libraries are customized with new features, different
data structures or rewriting previous implementations to match the integrated en-
vironment. Hence, directly applying a general patch is not trivial and sometimes
difficult.

1.4 Thesis Overview
To achieve the goal of alleviating the problem of automatically generating security
patches, we first investigate the impeding challenges in the adoption of program
repair by software practitioners to fix vulnerabilities/bugs in real-world applica-
tions, and address these challenges by proposing a series of cohesive techniques
that address the above tightly connected challenges.

• Trust in Program Repair Trust in automatically generated patches is nec-
essary for achieving our goal of using program-repair to automatically gener-
ate security patches. Towards this goal, we survey more than 100 software
practitioners to understand the artifacts and setups needed to enhance trust
in automatically generated patches. Based on the feedback from the survey
on developer preferences, we quantitatively evaluate existing test-suite based
program repair tools. We find that they cannot produce high-quality patches
within a top-10 ranking and an acceptable time period of 1 hour. The de-
veloper feedback from our qualitative study and the observations from our
quantitative examination of existing repair tools point to actionable insights
to drive program repair towards achieving trust in software developers.

• Compilation-Free Program Repair Existing program repair techniques,
such as generate & validate techniques suffer from some practical limitations.
Specifically, the validation step in test-based G&V requires that the candi-
date patch be applied to the program and recompiled, before tested against
the test suite. However, recompilation can be time consuming, especially if
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the G&V repair tool needs to validate thousands of potential patch candi-
dates. We propose to accelerate G&V-based repair by essentially removing
the compilation step, thereby achieving the goal of Compilation Free program
Repair (CFR). The basic idea is to use a combination of binary rewriting and
patch interpretation to directly validate candidate patches “on-the-fly” with-
out the need for program recompilation. This would allow for navigation of
significantly larger search spaces for program repair within a time limit which
is crucial to repair security vulnerabilities.

• Concolic Program Repair Existing program repair techniques modify a
buggy program such that it passes given tests. Such repair techniques do not
discriminate between correct patches and patches that overfit the available
tests. We propose an integrated approach to provide guarantees of software
security specification(s) via systematic co-exploration of the patch space and
input space. We leverage concolic path exploration to systematically traverse
the input space (and generate inputs), while ruling out significant parts of the
patch space. Our technique provides guarantees for generating high-quality
patches with respect to a user-provided program specification, in addition we
generate additional test-cases to increase the confidence for the correctness of
generated patches.

• Automated Patch Backporting We propose a patch backporting tech-
nique that can automatically transfer patches from one version of a software
into other older versions. Our approach aims to generalize and backport secu-
rity patches across different versions of the same software. We first synthesize
a partial transformation rule based on a single patch. This rule can then
be generalized by analysing the alignment between two different versions of
the same program, exploiting the syntactic similarity between the two pro-
grams. The generalized rule is then applied to the target version to produce a
backported patch. Compared to existing techniques, our approach improves
both the precision and recall in backporting patches. The proposed method
also helps in reducing the exposure to known security vulnerabilities in older
versions of the same software.
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• Automated Patch Transplantation A patch generated for an error in a
known software program is automatically adapted and inserted into a “simi-
lar” target program. This work aims to port security patches across different
software systems, to improve protection of the overall software ecosystem.
We propose and implement a workflow for transplanting patches, across syn-
tactically different yet semantically similar programs. Our approach centers
on identifying patch insertion points, as well as namespace translation across
programs via symbolic execution. The proposed method help mitigate similar
vulnerabilities in different software systems known as recurring vulnerabilities.

Research Scope

In this thesis, we restrict our work to fix identified software security vulnerabilities.
Our work does not investigate zero-day vulnerabilities which are vulnerabilities that
exist but not disclosed nor discovered. Zero-day vulnerabilities pose a higher risk to
users because malicious users race to exploit these vulnerabilities and the vulnerable
systems are exposed until a patch is issued by the vendor. A patch to a zero-day
vulnerability would not be generated until its discovery or disclosure. Except for
zero-day vulnerabilities, our proposed solutions should help minimize the impact of
already identified vulnerabilities by quickly generating patches to mitigate similar
variants of the identified vulnerability.

1.5 Contributions and Impact

1.5.1 Conceptual Contributions

Despite the benefits, previous syntactic program repair techniques suffered from the
problem of overfitting patches, since the specification was inferred from tests which
only captured the correctness criteria of "passing the tests". Semantic repair tech-
niques showed promise to infer specification representing the meaning of the defect
compared to just "passing the tests", that provided additional correctness guaran-
tees. Early work on semantic program repair extracted specification that effectively
captures the semantics of the whole program [100], which inadvertently introduced
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scalability issues when applied to large-scale programs. More recent work [92] ad-
dressed the scalability issues by extracting a concise semantic-signature that scales
constraint-based repair to large-scale programs. We introduce a novel technique
“concolic program repair” which takes a balanced approach by taking a viewpoint
of “gradual correctness” which starts from the concise semantics presented by [92]
and gradually improve the specification to the extent of inferring the specification
for the whole program. Exploring this viewpoint with an anytime algorithm allows
the user to decide on the level of correctness enforced as repair constraints, starting
from the concise correctness provided by the tests to the extent of whole program
correctness. Using an anytime algorithm, we can return a partially correct set of
patches, whose quality depends on the amount of verification which it was able to
perform. Hence, we show that program repair problem can be formulated as an any-
time algorithm which provides flexibility in time and resources, while making sure
the output is better quality in return for turn-around time. This notion of “grad-
ual correctness” can also be meaningful for program synthesis and transplantation
whereby producing high quality automatically generated code.

Another limitation in semantic program repair is the path explosion problem
inherited from classical symbolic execution, that might limit its effectiveness. In
recent work this limitation was addressed by symbolic execution with existential
second-order constraints which considered the search space into account during
path exploration [90]. Raising the order of path constraints, one can effectively
check for path infeasibility in the context of considered language of interpretations
(for program repair, the patch space), thus allowing to efficiently prune irrelevant
paths. This approach allows to reason about the input-space from the context of
the patch-space. We take a step further to simultaneously reason about the patch-
space from the context of the input-space, as well. The systematic co-exploration
of the patch-space and input-space can be realized using symbolic execution by
computing the path constraints for the exploration in terms of input variables and
program variables. This allows us to use a light-weight symbolic execution such as
concolic execution to drive the exploration, while providing the semantic reasoning
to check for patch infeasibility with respect to a given program-specification. Such
a co-exploration enables systematic traversal of a large-search space efficiently. One
could potentially replace symbolic execution with other automated test generation
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techniques in our method, such as recent systematic versions of greybox fuzzing
[13]. Conceptually, we present the idea of systematic co-exploration of the input
space and patch space which leads to less over-fitting patches, over time.

Once a “trusted” correct patch is generated or manually written by the de-
veloper, the next step would be to adapt the patch to older versions of the same
program. Early work on backporting formulated the problem as a program trans-
formation problem where the goal was to find the most general transformation that
is applicable to a large input-space. Program transformation techniques attempt to
capture the most-generalized transformation by abstracting the context [93]. If the
transformation is over-generalized it will lead to higher number of false-positives and
it under-generalized it will lead to a higher number of false-negatives. Therefore, we
once more take a balanced viewpoint that the transformation rule should strike a
balance such that the context is not over-generalized and the transformation is not
over-specific. Hence, we formulate the backporting problem as a program synthesis
problem where the goal is to synthesise the correct transformation rule for the tar-
get context. In comparison to existing program transformation techniques which
search for a single transformation rule that can be applied for all input, the goal
should be to generate for each version the transformation rule that match the target
context. Re-purposing program synthesis technique for program transformation to
backport patches, shows significant improvement in our experiment results.

1.5.2 Technological Contributions

In summary, the core technological contributions made by this thesis are:

• A novel technique to systematically co-explore the input space and program
space, which can incorporate a user provided program-specification to guide
program repair for high-quality patches. Our “concolic program repair” tech-
nique can efficiently explore a large-search space, producing additional test-
cases for validation and ranking high-quality patches while gradually improv-
ing the overall correctness of the generated patches.

• A novel transformation rule synthesis algorithm that can produce properly
generalized transformation rules to automate the patch backporting process.
Proposed patch backporting technique can synthesise transformation-rules
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from a single example, which allows synthesis of different transformations
for different programs.

• The PatchWeave transplantation technique, performs concolic execution driven
code transplantation which can automatically identify the insertion point for
the transplantation based on the semantic similarities of any two programs
that implement a higher-level abstraction such as a standard or a protocol.

Based on the above proposed concepts, we have developed and open-sourced
three tools, CPR, FixMorph and PatchWeave.

• CPR, which can incorporate user provided program-specification to filter
over-fitting patches, is open-sourced at https://github.com/rshariffdeen/cpr

• FixMorph, which can automatically backport patches for the Linux kernel
project, is open-sourced at https://github.com/rshariffdeen/fixmorph

• PatchWeave, which can automatically extract and transplant patches across
semantically similar programs is, open-sourced at
https://github.com/rshariffdeen/patchweave

1.5.3 Empirical Contributions

We believe in the Open Science approach, openness in scientific work is key to fos-
tering progress via transparency and availability of all outputs produced at each
investigative step. Transparency and availability of research outputs allow the re-
search community to better replicate and reproduce the findings in our quantitative
studies and recover information from our qualitative studies. Open science builds
the core for excellence in evidence-based research. Adhering to the principles of
Open Science, we explicitly committed ourselves to foster openness to our research
outcomes and made our artifacts available:

• All our findings from of our study on automated program repair and the quan-
titative and evaluation of the program repair tools are made available via
https://doi.org/10.5281/zenodo.5376904. Inclusive of reproducible codes for
the survey conducted with software practitioners and setup scripts to perform
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the quantitative experiments on existing program-repair tools. Our submitted
artifact was evaluated and awarded all three reproducible badges by the Arti-
fact Evaluation Committee, at the 44th IEEE/ACM International Conference
on Software Engineering (ICSE’22).

• Artifacts on all our experiments on concolic program repair are made avail-
able via https://cpr-tool.github.io. Our submitted artifact was evaluated and
awarded all three reproducible badges by the Artifact Evaluation Commit-
tee, at the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI’21).

• Data on the empirical study of the Linux backporting efforts and all our exper-
iments on automated patch backporting inclusive of the comparison studies
are made available via https://fixmorph.github.io. Our submitted artifact was
evaluated and awarded the most distinguished artifact award by the Artifact
Evaluation Committee, at the 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA’21).

• Artifacts on all our experiments on automated patch transplantation are made
available via https://patchweave.github.io

Our contributions impact the current state of practice of vulnerability fixing by
software developers and the research community in developing techniques to pre-
serve security of software. Our technical contributions make an impact by assisting
developers to repair software security vulnerabilities efficiently and in a timely man-
ner. Specifically, the developed concepts and techniques enables developers to au-
tomatically and efficiently fix a wider range of security vulnerabilities in real-world
software. It can also provide additional guarantees that were previously missing
in existing program repair techniques, that the auto-generated patches are correct.
This greatly impacts the productivity of the developers, helps mitigate software
vulnerabilities and increase the security of software systems. Our empirical contri-
butions make an impact by assisting researchers in the software engineering com-
munity to evaluate/investigate further research directions using our findings and
reproducible artifacts.
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1.6 Thesis Outline
This thesis first introduces the background knowledge necessary for this work in
Chapter 2, we provide an overview in symbolic execution, program synthesis, pro-
gram repair and software transplantation. Next, we present our study on developer’s
perspective on automated program repair and identify the impeding challenges to
incorporate automatically-generated patches to fix vulnerabilities in real-world ap-
plications in Chapter 3. Chapter 4 introduces the concept of compilation free re-
pair as a solution to improve the efficacy of generate & validate repair techniques
by removing the compiler-in-the-loop from the repair process, enabling significant
speedup for the overall repair process. In Chapter 5 we introduce a novel re-
pair technique, ‘concolic program repair‘ which can incorporate a user-provided
program-specification to guide program repair, which can address limitations in ex-
isting program-repair to fix security-vulnerabilities. Chapter 6 presents an empirical
study on the backporting problem in Linux kernel, which has a significant impact
on software system security and provides a solution for the backporting problem
inspired from patch-synthesis technique. Chapter 7 introduces to the problem of
automated patch transplantation (which addresses a specific class of security vul-
nerabilities known as recurring vulnerabilities) and evaluate our proposed solution
based on a combination of concolic execution and symbolic reasoning. Chapter 8
presents the related work and Chapter 9 concludes this thesis by summarizing all
the presented techniques and improvement, and we discuss potential future research
directions based on our current contributions.
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CHAPTER 2. BACKGROUND

Chapter 2

Background
This chapter introduces the necessary background knowledge in the areas of soft-
ware security, symbolic execution, program synthesis, program repair and software
transplantation.

2.1 Software Security Vulnerabilities
A software system is a collection of software programs and/or dependent library
modules. A bug in a software refers to an observable error that produces an incorrect
result or an unintended behavior. A software security vulnerability is a software
bug that can be taken advantage of to disrupt the intended behavior of the software
system. Such software vulnerability can aid malicious users to misuse a software
application and circumvent deployed security measures for the system.

A zero-day vulnerability is a security vulnerability in a software system or
hardware device that has been identified but not yet disclosed, thus not yet patched.
Usually discovered by malicious users before the vendor of the software systems has
become aware of it. An attacker who identifies a zero-day vulnerability will retain
its viability with reasonable confidence for higher probability of success for a long
period in the order of years. Large-scale exploitation of such zero-day vulnerabilities
may result in detection and subsequent remediation, hence an attacker uses such
vulnerabilities for targeted attacks which persist unnoticed.

An exploit is a software code that takes advantage of an existing software security
vulnerability. It is usually generated by security researchers as a proof-of-concept
threat for further investigations or to aid remediation. Malicious users generate
exploits to further their operations. A zero-day exploit is a certain type of exploit
that targets zero-day vulnerabilities to take advantage of the non-existence of its

16



discovery. The act of using zero-day exploits to cause damage to or steal data
from a software system affected by zero-day vulnerability is known as a zero-day
attack. There is almost zero defense against a zero-day attack due to the nature
of being unknown. Since the vulnerability remains unknowns the software affected
cannot be patched nor detected using anti-virus products that uses signature-based
scanning.

Although zero-day attacks pose a significant threat to the security of the soft-
ware system, there exist another class of vulnerabilities that poses a much larger
concern due to its readily available active exploits and widely available knowledge
from public disclosure documents. N-day attacks use already disclosed security
vulnerabilities that may or may not have a security patch available. The N in N-day
attack signifies the number of days between the time of disclosure of the vulnera-
bility and the time of the attack. The goal of malicious attackers is to capitalize
on this time window while the goal of the software vendors, distributors is to patch
such systems as quickly as possible.

2.2 Symbolic Execution
Symbolic execution, introduced in the mid ’70s to test whether certain properties
can be violated by a piece of software [15, 50, 60, 61] has recently emerged as
an effective technique for generating high-coverage test suites and for finding deep
errors in complex software programs [16, 42], as a result of significant advances
in constraint satisfiability solvers. Typically used in testing to explore program
paths, generate a set of concrete witnesses (input values) exercising a given path.
Contrast to concrete execution where a program is run on a specific input and a
single control flow path is explored, symbolic execution is performed by a symbolic
execution engine, which maintains for each explored control flow path: (i) a first-
order boolean formula that describes the conditions satisfied by the branches taken
along that path, and (ii) a symbolic memory store that maps variables to symbolic
expressions or values.

Figure 2.1 illustrates the difference between symbolic execution and concrete
execution for the two computations x+1 and 2x. Consider the output of the two
concrete executions, which result in the concrete value 2. Analysing the output of a
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Figure 2.1: Comparison of symbolic execution and concrete execution.

On the left hand side the computation for (x + 1) with the leftmost diagram depict-
ing the concrete execution and alongside with the symbolic execution. Similarly, on
the right hand side the computation for (2x) with the rightmost diagram depicting
the symbolic execution alongside with the concrete execution to its left.

concrete execution does not provide us any insight on the semantic meaning of the
output, and cannot differentiate the two computations are different based on the
concrete output alone, unless multiple such output values are collected. In contrast
symbolic execution allows us to not only differentiate the two computations based
on a single execution, but also provide semantic meaning for the two outputs. The
semantic meaning, helps us to perform program analysis in an efficient and scalable
manner, which we will explore in the next section of program repair. In the context
of software security, it has been widely used to provide guarantees for the non-
existence of division by zero, NULL pointer dereferences and other security/software
properties. While in general there is no automated way to decide some properties
(e.g., the target of an indirect jump), heuristics and approximate analyses can prove
useful in practice in a variety of settings, including mission-critical and security
applications [7].

There are two artifacts of symbolic execution that are of use for program analysis
and program repair. Symbolic Expression is a formula derived from the oper-
ations over symbolic inputs. Symbolic Path Condition is a first-order boolean
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formula that describes the conditions satisfied by the branches taken along that
path.

Figure 2.2: Example code for Symbolic Execution

1 input in=5;

2 a=0; b=0;

3 if (in > 3){

4 a = in * 2;

5 b = in + 2;

6 b = b + 2;

7 }

8
9 if (a > b){

10 return error;

11 }

Figure 2.2 shows a sample C code snippet for a symbolic execution in which we
mark program variable in as symbolic (denoted by θ), and Table 2.1 records the
symbolic store and symbolic path condition along each line. The symbolic store
keeps track of each variable observed along a program execution with the symbolic
expression for the variable. The path condition reflects the branch conditions that
was satisfied along a given execution path.

Assuming line number 4 of Figure 2.2 is executed, it should satisfy the first
branch condition (in > 3), since we mark the variable in as symbolic θ, our symbolic
path condition will be updated as (θ > 3). Similarly, the value of program variable
a will be updated to the symbolic expression (a, 2θ) since the new value of a is
computed using a symbolic variable. The symbolic store and the path condition
will be updated as the execution continues. Executing line number 10 in Figure 2.2
depends on the satisfiability of the branch condition at line number 9. Using SMT
solvers [142] we can compute such satisfiabilities which allows us to perform advance
program analysis alone a single symbolic execution. Depending on the specific
analysis we perform using symbolic execution, various kinds of semantic reasoning
and/or path exploration can be performed for the given test code. For this example
run, if the satisfiability holds true, the program will return an error which can be
then computed as a constraint to generate an input for the observed error.

There are several types of symbolic execution of interest:
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Table 2.1: Illustration of symbolic execution

Line Symbolic Store Path Condition

1 {} (true)
2 {(a, 0), (b, 0)} (true)
3 {(a, 0), (b, 0)} (θ > 3)
4 {(a, 2θ), (b, 0)} (θ > 3)
5 {(a, 2θ), (b, θ+2)} (θ > 3)
6 {(a, 2θ), (b, θ+4)} (θ > 3)
7 {(a, 2θ), (b, θ+4)} (θ > 3)
9 {(a, 2θ), (b, θ+4)} (θ > 3) ∧ ( 2θ > (θ + 4))

• Classical Symbolic Execution: a symbolic execution of a program that
can generate(in theory) all possible control flow paths that the program could
take during its concrete executions on specific inputs. While modeling all
possible runs allows for very interesting analyses, it is typically infeasible in
practice, especially on real-world software.

• Concolic Execution: the term concolic is a portmanteau of the words “con-
crete” and “symbolic”. This technique makes use of concrete input to drive
the symbolic execution, compared to classical execution where the inputs are
purely symbolic. There are multiple approaches using concolic execution such
as dynamic symbolic execution as used in DART [42] and SAGE [43], selective
symbolic execution as used in S2E [26] and MAYHEM [18].

• Symbolic Backward Execution: a variant of symbolic execution in which
the exploration proceeds from a target point to an entry point of a program.
The analysis is thus performed in the reverse direction than in canonical (for-
ward) symbolic execution. The main purpose of this approach is typically to
identify a test input instance that can trigger the execution of a specific line
of code (e.g., an assert or throw statement) [29, 22, 84].

2.3 Program Synthesis
Synthesis is a combination of components or elements to form a connected whole,
similarly program synthesis is a methodology that can automatically construct pro-
grams from some predefined set of components (i.e. synthesis language), while
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adhering to a given user specification (requirements). Specification is defined as
input7→output pairs which describes the intended behavior of the program. Specif-
ically, for a given input domain I and output domain O, the synthesis technique
should take as input a list of pairs {i0 7→ o0, ..., in 7→ on} and generate a program
P : I→ O such that P (ik) = ok for all 0 ≤ k ≤ n.

2.3.1 Component-based Program Synthesis

Recent work formalized program synthesis from the logical point of view, and con-
sidered as a second-order constraint solving problem [90]. Initially Jha et al. [53]
proposed an approach to encode the search space using linear integer arithmetic
constraints. Mechtaev et al. [90] represented the search-space as circuits built from
user-provided components such as addition("+"), subtraction("-") etc. where con-
nection between components are captured using integer location variables. Thus,
a program can be reconstructed by a valuation of location variables which can be
achieved using an SMT solver.

2.3.2 Code Transformation

Program synthesis technique can be used to automatically transform code using its
Abstract Syntax Tree (AST) representation. ReFazer [113] is one such technique
known for code transformations. It uses its own domain-specific language(DSL)
where a transformation is formulated as a function pair (guard, transformer). We
denote the set of typed ASTs as T. A transformation rule R : T → T formu-
lates how to transform a T to another T. Rule R can be represented as a pair
(guard, transformer) similar to [113, 95] defined as follows:

• guard: T → Boolean: guard is a conjunction of predicates over AST nodes.
Basically, a guard tests the type, code and other attributes of an AST node and
returns a Boolean value representing whether the node satisfies its predicate or
not;

• transformer: T → T: transformer takes an input T and constructs another
T. It is built from two underlying operations: (1) select: returns an existing
node from input T satisfying a given guard, and (2) construct: returns a new
node constructed from a specific node kind, attributes, and children.
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Essentially, the rule guard determines which AST sub-node should be transformed,
and the transformer determines how the sub-node should be transformed. Thus,
for t ∈ T, we have R(t) = transformer(t) when guard(t) is true, otherwise, R(t)
is ⊥.

2.4 Program Repair
Program Repair is the problem of minimally modifying a program with the goal of
fixing an identified error or remedying an unintended behavior. Automated Program
Repair requires providing a correctness criteria that may include both functional
and non-functional requirements. Existing program repair techniques derive such
specification from a test-suite and possibly other quality metrics that can be used
as a fitness function to evaluate the best modification. Several repair techniques
have been studied in the literature with the goal of finding the correct program that
pass the given test-suite thus fixing an identified/observable bug.

2.4.1 Search-Based Repair

Program Repair problem can be formulated as a search problem where the goal is to
search for the correct patch (i.e. program modification) in a large-space consisting of
different patches, that can meet the specification defined by the test-suite. The first
step is to generate a search space (i.e. patch space) S [80] and then search among
S to find the patch P that satisfies the correctness requirements. Different tech-
niques have been proposed to define the search-space based on a set of predefined
repair operators such as mutation [68] and templates derived from human-written
patches [79, 78]. Once the search-space is generated, the algorithm would then
search for the correct patch using various search heuristics. The process termi-
nates once a program is found to pass the correctness criteria, the found patch is
known as a ‘plausible patch‘. This resulted in generating patches that are overfit-
ting the given test-suite and fails on test-cases outside of the provided test-suite.
Several approaches have been studied to alleviate the overfitting problem using
anti-patterns [138] and additional test-generation [39]. Furthermore, traditional re-
pair techniques enumerates the search-space one at a time and evaluate each patch
against the provided test-suite, which is inefficient and time-consuming thus does
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not scale for programs with a large search-space. Recent studies have shown to
improve the space exploration using test-equivalence analysis [89, 58] which can
optimize the search process.

2.4.2 Semantic-Based Repair

Program Repair problem can also be formulated as a constraint-solving problem
which initially construct constraints that should be satisfied to repair a bug, and
then use program synthesis (i.e. component-based synthesis [53]) to synthesise a
patch that satisfies the generated repair constraints. The constraints for the cor-
rectness criteria is derived from the provided test-suite, hence the initial step is to
extract the specification as repair-constraints from the provided test-suite, usually
achieved with symbolic execution. For each identified suspicious location in the pro-
gram, traditional semantic-repair techniques [100, 161, 91] would inject symbolic
variables and derive repair constraints by running against the test-suite. Once the
specification is inferred, it will be used to synthesize a replacements for the suspi-
cious location that would enable the program to pass the initially failing test cases.
Since the specification is derived from the provided test-suite, the repair generated
also inherits the problem of overfitting. Furthermore, since the use of specification
inference is dependent on symbolic execution [100], it suffers from the path explo-
sion problem in symbolic execution thus limits its effectiveness. Recent work on
semantic-repair takes a different approach of specification inference that extracts
concise synthesis specification instead of whole program [92], which also allowed to
repair complex multi-line changes. The path explosion problem in symbolic exe-
cution has also been addressed with existential second-order constraints [90] that
considers the search-space during path exploration.

2.4.3 Learning-Based Repair

Program Repair problem can also be formulated as a code transformation problem,
where the patch generation is considered as a transformation of the Abstract Syntax
Tree(AST) representation of the program. These techniques [77, 6, 10] mine for pat-
terns from large code-bases to learn different kinds of transformations that can fix
reported bugs in open-source software repositories. Since the approach learns repair
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strategies by mining existing patches, they do not require a set of predefined trans-
formation operators. More recent work on neural machine translation for program
repair also known as "neural program repair" is based on encoder-decoder architec-
ture optimized with cross-entropy loss function that can translate the buggy code
into a correct code [165, 167, 147, 83, 57, 48, 25, 19, 20]. This line of work rep-
resent the program as code edits for the AST, where a supervised learning model
learns from a large training set of previous developer commits. The loss function
is computed as the difference between the generated tokens and the human-written
patch tokens in a strict pairwise matching, which can be used to adjust the weights
of the model to obtain a result that is closer to the ground truth at the token-level.

2.5 Software Transplantation
Transplantation is a technique of introducing foreign organ to an existing body, and
similarly in the context of software, injecting foreign code from a different software
is known as software transplantation[9, 126, 125]. In the transplantation literature
a organ is a piece of code ( a function, a test case, a validation check etc.) which
will be transferred, a donor is a program which provides the organ that will be
transplanted, and the host/target/receiver is the program which the organ will be
injected into.

A programmer must first identify a compatible pair where the organ can be
shared, i.e. code similarity, implementation, and design similarity. Once a pair of
programs have been identified, the organ that needs to be transplanted should be
extracted (all code associated with the feature/test/block) and must identify the
implantation point (insertion point) in the target. The extraction of the code also
involves identifying all semantically required code and the successful insertion of the
code organ into the host requires nontrivial modifications to the organ to ensure
it adds the required feature without breaking existing functionality. Translation of
namespace and adaptation of data-structures would be required for the transfer.
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CHAPTER 3. DEVELOPER’S PERSPECTIVE ON AUTOMATED
PROGRAM REPAIR

Chapter 3

Developer’s perspective on
Automated Program Repair
Automated program repair is an emerging technology that seeks to automatically
rectify vulnerabilities and bugs using learning, search, and semantic analysis. Trust
in automatically generated patches is necessary for achieving greater adoption of
program repair. Especially when fixing high-impact time-critical security vulnera-
bilities which could lead to potential economical and financial losses. Towards this
goal, we survey more than 100 software practitioners to understand the artifacts
and setups needed to enhance trust in automatically generated patches and iden-
tify impeding challenges to incorporate an automated solution to fix vulnerabilities
and bugs. Based on the feedback from the survey on developer preferences, we
quantitatively evaluate existing test-suite based program repair tools. In this chap-
ter we study the developer expectation of the role of automated program repair in
the software development life cycle. More specifically we study the expectations of
the developers and the impeding technical challenges in practice to integrate auto-
generated patches in real-world applications. This chapter starts with an overview
on how automated program repair works and what correctness guarantees are pro-
vided to trust auto-generated patches. It continues with a qualitative study with
software practitioners to gain insight on the expectations of program repair tools.
Afterwards, a quantitative analysis of existing automated program repair tools will
be presented with respect to the developer expectations. The chapter concludes
with actionable insights to drive program repair research, specifically in the direc-
tion of trusted repair.
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3.1 Overview
Automated program repair technologies [69] are getting increased attention. In re-
cent times, program repair has found its way into the automated bug fixing of mobile
apps in the SapFix project in Facebook [85], automated repair bots as evidenced
by the Repairnator project [148], and has found certain acceptability in companies
such as Bloomberg [62]. While all of these are promising, large-scale adoption of
program repair where it is well integrated into our programming environments is
considerably out of reach as of now. In this chapter, we reflect on the impediments
towards the usage of program repair by developers. There can be many challenges
towards the adoption of program repair like scalability, applicability, and developer
acceptability. A lot of the research on program repair has focused on scalability to
large programs and also to large search spaces [79, 92, 39, 85]. Similarly, there have
been various works on generating multi-line fixes [92, 40] to cover various use cases
or scenarios of program repair.

Surprisingly, there is no literature or systematic study from either academia or
industry on the developer trust in program repair. In particular, what changes
do we need to bring into the program repair process so that it becomes viable to
have conversations on its wide-scale adoption? Part of the gulf in terms of lack of
trust comes from a lack of specifications since the intended behavior of the program
is not formally documented, it is hard to trust that the automatically generated
patches meet this intended behavior. Overall, we seek to examine whether the
developer’s reluctance to use program repair may partially stem from not relying
on automatically generated code. This can have profound implications because of
recent developments on AI-based pair programming1, which holds out promise for
significant parts of coding in the future to be accomplished via automated code
generation.

In this chapter, we specifically study the issues involved in enhancing developer
trust on automatically generated patches. Towards this goal, we first settle on the
research questions related to developer trust in automatically generated patches.
These questions are divided into two categories (a) expectations of developers from
automatic repair technologies, and (b) understanding the possible shortfall of ex-

1Github Copilot https://copilot.github.com/
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isting program repair technologies with respect to developer expectations. To un-
derstand the developer expectations from program repair, we outline the following
research questions.

RQ1 To what extent are the developers ready to accept and apply automated
program repair (henceforth called APR)?

RQ2 Can software developers provide additional inputs that would cause higher
trust in generated patches? If yes, what kind of inputs can they provide?

RQ3 What evidence from APR will increase developer trust in the patches pro-
duced?

For a comprehensive assessment of the research questions, we engage in both qual-
itative and quantitative studies. Our assessment of the questions primarily comes
in three parts. To understand the developer expectations from program repair, we
conduct a detailed survey (with 35 questions) among more than 100 professional
software practitioners. Most of our survey respondents are developers, with a few
coming from more senior roles such as architects. The survey results amount to
both quantitative and qualitative inputs on the developer expectations since we
curate and analyze respondents’ comments on topics such as desired evidence from
automated repair techniques. Based on the survey findings, we note that developers
are largely open-minded in terms of trying out a small number of patches (no more
than 10) from automated repair techniques, as long as these patches are produced
within a reasonable time, say less than 1 hour. Furthermore, the developers are
open to receiving specifications from the program repair method (amounting to
evidence of patch correctness). They are also open-minded in terms of providing
additional specifications to drive program repair. The most common specifications
the developers are ready to give and receive are tests.

Based on the comments received from survey participants, we then conduct a
quantitative comparison of certain well-known program repair tools on the widely
used ManyBugs benchmarks [46]. To understand the possible deficiency of existing
program repair techniques with respect to outlined developer expectations as found
from the survey, we formulate the following research questions.
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RQ4 Can existing APR techniques pinpoint high-quality patches in the top-ranking
(e.g., among top-10) patches within a tolerable time limit (e.g., 1 hour)?

RQ5 What is the impact of additional inputs (say, fix locations and additional
passing test cases) on the efficacy of APR?

We note that many of the existing papers on program repair use liberal timeout pe-
riods to generate repair, while in our experiments the timeout is strictly maintained
at no more than one hour. We are also restricted to observing the first few patches,
and we examine the impact of the fix localization by either providing and not pro-
viding the developer location. Based on a quantitative comparison of well-known
repair tools Angelix [92], GenProg [68], Prophet [79] and Fix2Fit [39] — we
conclude that the search space representation has a significant role in deriving plau-
sible/correct patches within an acceptable time period. In other words, an abstract
representation of the search space (aided by constraints that are managed efficiently
or aided by program equivalence relations) is at least as critical as a smart search
algorithm to navigate the patch space. We discuss how the tools can be improved
to meet developer expectations, either by achieving compilation-free repair or by
navigating/suggesting abstract patches with the help of simple constraints (such as
interval constraints).

Last but not the least, we note that program repair can be seen as automated
code generation at a micro-scale. By studying the trust issues in automated repair,
we can also obtain an initial understanding of trust enhancement in automatically
generated code. Which plays a vital role in adapting auto-generated patches to fix
security vulnerabilities.

3.2 Specifications in Program Repair
The goal of APR is to correct buggy programs to satisfy given specifications. In
this section, we review these specifications and discuss how they can impact patch
quality.
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Test Suites as Specification

APR techniques such as GenProg [68], Prophet [79], treat test-suite as correct-
ness specification. The test suite usually includes a set of passing tests and at least
one failing test. The repair goal is to correct the buggy program to pass all the
given test suites. Although test suites are widely available, they are usually incom-
plete specifications that specify part of the intended program behaviors. Hence,
the automatically generated patch may overfit the tests, meaning that the patched
program may still fail on program inputs outside the given tests. For instance, the
following is a buggy implementation that copies n characters from source array src

to destination array dest, and returns the number of copied characters.

1 int lenStrncpy(char[] src, char[] dest, int n){
2 if(src == NULL || dest == NULL)
3 return 0;
4 int index = -1;
5 while (++index < n)
6 dest[index] = src[index]; // buffer overflow
7 return index;
8 }

Figure 3.1: Illustrative example for patch-overfitting problem

A buffer overflow happens at line 6 when the size of src or dest is less than n. By
taking the following three tests (one of them can trigger this bug) as specification, a
produced patch (++index<n 7→ ++index<n && index<3) can make the program
pass the given tests. Obviously, the patched program is still buggy on test inputs
outside the given tests.

Table 3.1: Illustrative test-suite for patch-overfitting problem

Type src dest n Output Expected Output

Passing SOF COM 3 3 3
Passing DHT APP0 3 3 3
Failing APP0 DQT 4 *crash 3

Constraints as Specification

Instead of relying on tests, another line of APR research, e.g., ExtractFix [40]
take constraints as correctness specifications. Constraints have the potential to
represent a range of inputs or even the whole input space. Driven by constraints, the
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goal of APR is to patch the program to satisfy the constraints. However, different
from the test suite, the constraints are not always available in practice; for this
reason, techniques like Angelix [92] and SemFix [100] take tests as specifications
but extract constraints from tests. Certain existing APR techniques take as input
coarse-grained constraints, such as assertions or crash-free constraints. For instance,
ExtractFix relies on predefined templates to infer constraints that can completely
fix vulnerabilities. For the above example, according to the template for buffer
overflow, the inferred constraint is index<sizeof(src)&&index<sizeof(dest).
Once the patched program satisfies this constraint, it is guaranteed that the buffer
overflow is completely fixed. Guarantees from such fixing of overflows/crashes do
not amount to full functionality correctness guarantee of the fixed program.

Code Patterns as Specification

Besides test suites and constraints, code patterns can also serve as specifications for
repair systems. Specifically, given a buggy program that violates a code pattern,
the repair goal is to correct the program to satisfy the rules defined by the code pat-
tern. The code patterns can be manually defined [138], from static analyzers [146],
automatically mined from large code repositories [6, 10], etc. Similar to the inferred
constraints, code patterns cannot ensure functionality correctness.

3.3 Developer Survey
Since constructing formal program specifications is notoriously difficult, the speci-
fications used by APR tools cannot ensure patch correctness. Unreliable overfitting
patches cause developers to lose trust in APR tools. It motivates us to enquire/-
survey developers on how APR can be enhanced to gain their trust.

3.3.1 Survey Methodology

We designed and conducted a survey with software practitioners, specifically to
answer the first three research questions (RQ1-3). In June 2021, we distributed a
questionnaire to understand how developers envision the usage of automated pro-
gram repair and what can be provided to increase trust in automatically generated
patches. Note that we followed our institutional guidelines and received approval
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from the Institutional Review Board (IRB) of our organization, prior to adminis-
tering the survey.

Survey Instrument

We asked in total 35 questions about how trustworthy APR can be deployed in
practice. Our questions are structured into six categories:

C1 Usage of APR (RQ1): whether and how developers would engage with APR.

C2 Availability of inputs/specifications (RQ2): what kind of input artifacts devel-
opers can provide for APR techniques.

C3 Impact on trust (RQ2): how additional input artifacts would impact the trust
in generated patches.

C4 Explanations (RQ3): what kind of evidence/explanation developers expect for
auto-generated patches.

C5 Usage of APR side-products (RQ3): what side-products of APR are useful for
the developers say for manual bug-fixing.

C6 Background: the role and experience of the participants in the software devel-
opment process.

C1 will provide insights for RQ1, C2 and C3 for RQ2, and C4 and C5 for RQ3.
The questions were a combination of open-ended questions like "How would you
like to engage with an APR tool?" and close-ended questions like "Would it increase
your trust in auto-generated patches if additional artifacts such as tests/assertions
are used during patching?" with Multiple Choice or a 5-point Likert scale. The
questionnaire itself was created and deployed with Microsoft Forms. A complete
list of our questions can be found in Table 3.2 and in our replication package.

Participants

We distributed the survey via two channels: (1) Amazon MTurk, and (2) person-
alized email invitations to contacts from global-wide companies. As incentives, we
offered each participant on MTurk 10 USD as compensation, while for each other
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Table 3.2: List of questions from the developer survey

Category Question Type
Q1.1 Are you willing to review patches that are submitted by APR techniques? 5-Point Likert Scale
Q1.2 How many auto-generated patches would you be willing to review before losing trust/interest in the technique? Selection + Other. . .

C1 Usage of Q1.3 How much time would you be giving to any APR technique to produce results? Selection + Other. . .
APR Q1.4 How much time do you spend on average to fix a bug? Selection + Other. . .

Q1.5 Do you trust a patch that has been adopted from another location/application, where a similar patch was already accepted by other
developers?

5-Point Likert Scale

Q1.6 Would it increase your confidence in automatically generated patches if some kind of additional input (e.g., user-provided test cases)
were considered?

5-Point Likert Scale

Q1.7 Besides some additional input that is taken into account, what other mechanism do you see to increase the trust in auto-generated
patches?

Open-Ended

Q2.1 Can you provide additional test cases (i.e., inputs and expected outputs) relevant for the reported bug? 5-Point Likert Scale
C2 Availability Q2.2 Can you provide additional assertions as program instrumentation about the correct behavior? 5-Point Likert Scale
of Inputs Q2.3 Can you provide a specification for the correct behavior as logical constraint? 5-Point Likert Scale

Q2.4 Would you be fine with classifying auto-generated input/output pairs as incorrect or correct behavior? 5-Point Likert Scale
Q2.5 How many of such queries would you answer? Selection + Other. . .
Q2.6 For how long would you be willing to answer such queries? Selection + Other. . .
Q2.7 What other type of input (e.g., specification or artifact) can you provide that might help to generate patches? Open-Ended
Q2.8 Please describe how you would like to engage with an APR tool. For example shortly describe the dialogue between you (as user
of the APR tool) and the APR tool. Which input would you pass to the APR tool? What do you expect from the APR tool?

Open-Ended

Q3.1 Would it increase your trust in auto-generated patches if additional artifacts such as tests/assertions are used during patching? 5-Point Likert Scale
C3 Impact on trust Q3.2 Which of the following additional artifacts will increase your trust? Multiple Choice

Q3.3 What are other additional artifacts that will increase your trust? Open-Ended
Q4.1 Would it increase your trust when the APR technique shows you the code coverage achieved by the executed test cases that are
used to construct the repair?

5-Point Likert Scale

C4 Explanations for
generated

Q4.2 Would it increase your trust when the APR technique presents the ratio of input space that has been successfully tested by the
inputs used to drive the repair?

5-Point Likert Scale

patches Q4.3 What other type of evidence or explanation would you like to come with the patches, so that you can select an automatically
generated patch candidate with confidence?

Open-Ended

Q5.1 Which of the following information (i.e., potential side-products of APR) would be helpful to validate the patch? Multiple Choice
C5 Usage of APR Q5.2 What other information (i.e., potential side-products of APR) would be helpful to validate the patch? Open-Ended
side-products Q5.3 Which of the following information (i.e., potential side-products of APR) would help you to fix the problem yourself (without using

generated patches)?
Multiple Choice

Q5.4 What other information (i.e., potential side-products of APR) would help you to fix the problem yourself (without using generated
patches)?

Open-Ended

Q6.1 What is your (main) role in the software development process? Selection + Other. . .
C6 Background Q6.2 How long have you worked in software development? Selection

Q6.3 How long have you worked in your current role? Selection
Q6.4 How would you characterize the organization where you are employed for software development related activities? Selection + Other. . .
Q6.5 What is your highest education degree? Selection + Other. . .
Q6.6 What is your primary programming language? Selection + Other. . .
Q6.7 What is your secondary programming language? Selection + Other. . .
Q6.8 How familiar are you with Automated Program Repair? 5-Point Likert Scale
Q6.9 Are you applying any Automated Program Repair technique at work? Yes/No
Q6.10 Which Automated Program Repair technique are you applying at work? Open-Ended



participant, we donated 2 USD to a COVID-19 charity fund. We received 134 re-
sponses from MTurk. To filter low-quality and non-genuine responses, we followed
the known principles [33] and used quality-control questions. In particular, we asked
the participants to describe their role in software development and name their main
activity. In combination with the other open-ended questions, we have been able to
quickly identify non-genuine answers. After this manual post-processing, we ended
up with 34 valid responses from MTurk. From our company contacts, we received
81 responses, from which all have been genuine answers. From these in combination
115 valid responses, we selected 103 relevant responses, which excluded responses
from participants who classified themselves as Project Manager, Product Owner,
Data Scientist, or Researcher. Our goal was to include answers from software prac-
titioners that have hands-on experience in software development. Figure 3.2 and
3.3 show the roles and experiences for the final subset of 103 participants.
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Figure 3.2: Responses for Q6.1What is your (main) role in the software development
process?
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Figure 3.3: Responses for Q6.2 How long have you worked in software development?

Analysis

For the questions with a 5-point Likert scale, we analyzed the distribution of neg-
ative (1 and 2), neutral (3), and positive (4 and 5) responses. For the Multiple
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Figure 3.4: Results for the questions with the 5-point Likert Scale (103 responses).

Choice questions, we analyzed which choices were selected most, while the open-
ended "Other" choices were analyzed and mapped to the existing choices or treated
as new ones if necessary. For all open-ended questions, we performed a qualitative
content analysis coding [117] to summarize the themes and opinions. The first it-
eration of the analysis and coding was done by one author, followed by the review
of the other authors. In the following sections, we will discuss the most mentioned
responses, and indicate in the brackets behind the responses how often the topics
are mentioned among the 103 participants. All data and codes are included in our
replication package.

3.3.2 Survey Results

3.3.2.1 Developer engagement with APR

In this section, we discuss the responses for the questions in category C1 and ques-
tion Q2.8, which was explicitly exploring how the participants want to engage with
an APR tool. First of all, a strong majority (72% of the responses) indicate that
the participants are willing to review auto-generated patches (see Q1.1 in Figure
3.4). It generally confirms the efforts in the APR community to develop such tech-
niques. Only 7% of the participants are reluctant to apply APR techniques in their
work. As shown in Figure 3.5, we note that 72% of the participants want to review
only up to 5 patches, while only 22% would review up to 10 patches. Furthermore,
6% mention that it would depend on the specific scenario. At the same time, the
participants expect relatively quick results: 63% would not wait longer than one
hour, of which the majority (72% of them) prefer to not even wait longer than 30
minutes. The expected time certainly depends on the concrete deployment, e.g.,
repair can also be deployed along a nightly Continuous Integration (CI) pipeline,
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Figure 3.5: Cumulative illustration of the responses for Q1.2 How many auto-
generated patches would you be willing to review before losing trust/interest in the
technique?

but our results indicate that direct support of manual bug fixing requires a quick fix
suggestion or hints. In fact, 82% of the participants state that they usually spend
not more than 2 hours on average to fix a bug, and hence, the APR techniques
need to be fast to provide a benefit for the developer. To increase the trust in the
generated patches, 80% agree that additional artifacts (e.g., test cases), which are
provided as input for APR, are useful (see Q1.6 in Figure 3.4). As a consistency
check, we asked a similar question at a later point (see Q3.1 in Figure 3.4), and
obtained that even 85% agree that additional artifacts can increase their trust. The
most mentioned other mechanisms to increase trust are the extensive validation of
the patches with a test suite and static analysis tools (17/103), the actual manual
investigation of the patches (10/103), the reputation of the APR tool itself (9/103),
the explanation of patches (8/103), and the provisioning of additionally generated
tests (7/103).
RQ1 – Acceptability of APR: Additional user-provided artifacts like test cases
are helpful to increase trust in automatically generated patches. However, our
results indicate that full developer trust requires a manual patch review. At
the same time, test reports of automated dynamic and static analysis, as well as
explanations of the patch, can facilitate the reviewing effort.

The responses for the explicit question about developers’ envisioned engagement
with APR tools (Q2.8) can be categorized into four areas: the extent of interac-
tion, the type of input, the expected output, and the expected integration into the
development workflow.

Interaction Most participants (71/103) mention that they prefer a rather low
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amount of interaction, i.e., after providing the initial input to the APR technique,
there will be no further interaction. Only a few responses (6/103) mention the
one-time option to provide more test cases or some sort of specification to narrow
down the search space when APR runs into a timeout, or the generated fixes are
not correct. Only 3 participants envision a high level of interaction, e.g., repeated
querying of relevant test cases.

Input Most participants appear ready to provide failing test cases (22/103) or
relevant test cases (20/103). Others mentioned that APR should take a bug report
as input (15/103), which can include the stack trace, details of the environment,
and execution logs. Some also mentioned that they envision only the provision of
the bare minimum, i.e., the program itself or the repository with the source code
(11/103).

Output Besides the generated patches, the most mentioned helpful output from
an APR tool is explanations of the fixed issue including its root cause (9/103). This
answer is followed by the requirement to present not only one patch but a list of
potential patches (8/103). Additionally, some participants mentioned that it would
be helpful to produce a comprehensive test report (6/103).

Integration The most mentioned integration mechanism is to involve APR
smoothly in the DevOps pipeline (17/103), e.g., whenever a failing test is detected by
the CI pipeline, the APR would be triggered to generate appropriate fix suggestions.
A developer would manually review the failed test(s) and the suggested patches.
Along with the integration the participants mentioned that the primary goal of
APR should be to save time for the developers (8/103).
RQ1 – Interaction with APR: Developers envision a low amount of interaction
with APR, e.g., by only providing initial artifacts like test cases. APR should
quickly (within 30 min - 60 min) generate a small number (between 5 and 10) of
patches. Moreover, APR needs to be integrated into the existing DevOps pipelines
to support the development workflow.

3.3.2.2 Availability/Impact of Artifacts

In this section, we look more closely in the categories C2 and C3 to investigate
which additional artifacts can be provided by developers, and how these artifacts
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Figure 3.6: Responses for Q3.2 Which of the following additional artifacts will
increase your trust?

influence the trust in APR. We first explore the availability of additional test cases
(69% positive), program assertions (71% positive), and logical constraints (59%
positive) (see the results for Q2.1, Q2.2, and Q2.3 in Figure 3.4). Furthermore,
58% of the participants are positive about answering queries to classify generated
tests as failing or passing. This can be understood as participants want to have
low interaction (i.e., asking questions to the tool), but if the tool offers to provide
queries, they are ready to answer some of them (typically respondents preferring
to answer no more than 10 queries). Based on the results for open-ended ques-
tion Q2.7, majority of the participants (70/103) do not see any other additional
artifacts (beyond tests/assertions/logical-constraints/user-queries) that they could
provide to APR. The most mentioned responses by other participants are differ-
ent forms of requirements specification (7/103), e.g., written in a domain-specific
language, execution logs (6/103), documentation of interfaces with data types and
expected value ranges (5/103), error stack traces (4/103), relevant source code lo-
cations (3/103), and reference solutions (3/103), e.g., existing solutions for similar
problems.
RQ2 – Artifact Availability: Software developers can provide additional arti-
facts like test cases, program assertions, logical constraints, execution logs, and
relevant source code locations.

On the increase of trust in patches by the incorporation of additional artifacts
driving repair, 93% of the participants agree that additional test cases are helpful
(Figure 3.6). This is also interesting from the perspective of recent automated
repair tools [164] which perform automated test generation to achieve less overfitting
patches. Logical constraints (70%) and program assertions (68%) perform worse in
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this respect. Although user queries allow more interaction with the APR technique,
they would not necessarily increase the trust more than the other artifacts, as only
59% agreed on their benefit. Most of the participants (88/103) did not mention a
trust gained by other artifacts. However, a notable artifact has been non-functional
requirements (3/103) like performance or security aspects, which is related to a
concern that auto-generated patches may harm existing performance characteristics
or introduce security vulnerabilities.
RQ2 – Impact on Trust: Additional test cases would have a great impact on the
trustworthiness of APR. There exists the possibility of automatically generating
tests to increase trust in APR.

3.3.2.3 Patch Explanation/Evidence

In this section, we explore which patch evidence and APR side-products can support
trust in APR (see categories C4 and C5). We first proposed two possible pieces of
evidence that could be presented along with the patches: the code coverage achieved
by the executed test cases that are used to construct the repair, and the ratio of
input space that has been successfully tested by the automated patch validation.
76% of the participants agree that code coverage would increase trust, and 71%
agree with the input ratio (see Q4.1 and Q4.2 in Figure 3.4). The majority of the
participants (78/103) do not mention other types of evidence that would help to
select a patch with confidence. Nevertheless, the most mentioned response is a fix
summary (10/103), i.e., an explanation of what has been fixed including the root
cause of the issue, how it has been fixed, and how it can prevent future issues.
Other participants mention the success rate in case of patch transplants (5/103),
and a test report summarizing the patch validation results (3/103). These responses
match the observations for RQ1, where we asked how developers want to interact
with trustworthy APR and what output they expect.
RQ3 – Patch Evidence: Software developers want to see evidence for the
patch’s correctness to efficiently select patch candidates. Developers want to see
information such as code coverage as well as the ratio of the covered input space.

A straightforward way to provide explanations and evidence is to provide out-
puts that are already created by APR as side-products. We listed some of them
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Figure 3.8: Responses for Q5.3 Which of the following information (i.e., potential
side-products of APR) would help you to fix the problem yourself (without using
generated patches)?

and asked the participants to select which of them would be helpful to validate
the patches (see results in Figure 3.7). 85% agree that the identified fault and fix
locations are helpful to validate the patch followed by the generated test cases with
79% agreement. In addition, a few participants emphasize the importance of a test
report (4/103), an explanation of the root cause and the fix attempt (4/103).

Finally, we explore which side-products are most useful for developers, even
when APR cannot identify the correct patch. Figure 3.8 shows that the identified
fault and fix locations are of most interest (82%), followed by the generated test
cases (75%). Very few participants add that an issue summary (2/103) and the
potential results of a data flow analysis (2/103) could be helpful as well.
RQ3 – APR’s Side-Products: Our results indicate that side-products of APR
like the fault and fix locations and the generated test cases can assist manual patch
validation, and hence, enhance trust in APR.
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3.3.3 Threats to Validity

External Validity

Although we reached out to different organizations in different countries, we cannot
guarantee that our survey results can be generalized to all software developers.
To mitigate this threat, we made all research artifacts publicly available so that
other researchers and practitioners can replicate our study. To reduce the risk of
developers not participating or the volunteer bias, we designed the survey for a
short completion time (15-20 min) and provided incentives like charity donations
and (in the case of MTurk) monetary compensations.

Construct Validity

In our survey, to encourage candid responses from participants, we did not collect
any personally identifying information. Additionally, we applied control questions
to filter non-genuine answers. To mitigate the risk of wrong interpretation of the
collected responses, we performed qualitative analysis coding, for which all codes
have been checked and agreed by at least two authors. Although we found general
agreement across participants for many questions, we consider our results only as a
first step towards exploring trustworthy APR.

Internal Validity

Our participants could have misunderstood our survey questions, as we could not
clarify any particulars due to the nature of online surveys. To mitigate this threat,
we performed a small pilot survey with five developers, in which we asked for feed-
back about the questions, the survey structure, and the completion time. Addi-
tionally, there is a general threat that participants could submit multiple responses
because our survey was completely anonymous.

3.4 Quantitative Evaluation of APR
We now investigate to which extent existing APR techniques support the expecta-
tions and requirements collected with our survey. Not all aspects of our developer
survey can be easily evaluated. For example, the evaluation of the amount of inter-
action, the integration into existing workflows, the output format for the efficient
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patch selection, and the patch explanations, require additional case studies and fur-
ther user experiments. In this evaluation, we focus on the quantitative evaluation
of the relatively short patching time (30-60 min), the limited number of patches to
manually investigate (5 to 10), handling of additional test cases and logical con-
straints, and the ability to generate a repair at a provided fix location. We explore
whether state-of-the-art repair techniques can produce correct patches under con-
figurations that match these expectations and requirements. Specifically, we aim to
provide answers to the research questions RQ4 and RQ5.

3.4.1 Experimental Setup

3.4.1.1 APR Representatives

In our evaluation, we use the following representative state-of-the-art repair tech-
niques: GenProg [68], Angelix [92], Prophet [79], and Fix2Fit [39]. Gen-
Prog [68] is a search-based program repair tool that evolves the buggy program by
mutating program statements. It is a well-known representative of the generate-and-
validate repair techniques. Angelix [92] is a semantic program repair technique
that applies symbolic execution to extract constraints, which serve as a specification
for subsequent program synthesis. Prophet [79] combines search-based program
repair with machine learning. It learns a code correctness model from open-source
software repositories to prioritize and rank the generated patches. Fix2Fit [39]
combines search-based program repair with fuzzing. It uses grey-box fuzzing to
generate additional test inputs to filter overfitting patches that crash the program.
The test generation prioritizes tests that refine an equivalence class based patch
space representation.

3.4.1.2 Subject Programs

We use the ManyBugs [46] benchmark, which consists of 185 defects in 9 open-
source projects. For each subject, ManyBugs includes a test suite created by the
original developers. Note that all of the studied repair techniques require and/or
can incorporate a test suite in their repair process. For our evaluation, we filter the
185 defects that have been fixed by the developer at a single fix location. We remove
defects from "Valgrind" and "FBC" subjects due to the inability to reproduce the
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defects. Finally, we obtain 60 defects in 6 different open-source projects (Table 4.1).

Table 3.3: Experiment subjects for quantitative evaluation of APR

Program Description LOC Defects Tests

LibTIFF Image processing library 77k 7 78
lighttpd Web server 62k 2 295
PHP Interpreter 1046k 43 8471
GMP Math Library 145k 1 146
Gzip Data compression program 491k 3 12
Python Interpreter 407k 4 355

3.4.1.3 Experimental Configurations and Setup

All tools are configured to run in full-exploration mode; which will continue to
generate patches even after finding one plausible patch until the timeout or the
completion of exploring the search space. To study the impact of fix locations and
test case variations (see RQ5), we evaluate each tool using different configurations
(see Table 3.4). Note that in each configuration we provide the relevant source file
to all techniques, however, with "developer fix location" we provide the exact source
line number as well.

Table 3.4: Experiment configurations for quantitative evaluation of APR

ID Fix Location Passing Tests Timeout

EC1 tool fault localization 100% 1hr
EC2 developer fix location 100% 1hr
EC3 developer fix location 0% 1hr
EC4 developer fix location 50% 1hr

3.4.1.4 Evaluation Metrics

In order to assess the techniques, we consider eight metrics: M1 the search space
size of the repair tool, M2 the number of enumerated/explored patches, M3 the
explored ratio with respect to the search space, M4 the number of non-compilable
patches, M5 the number of non-plausible patches, i.e., patches that have been
explored but ruled out because existing or generated test cases are violated, M6
the number of plausible patches, M7 the number of correct patches, and M8 the
highest rank of a correct patch. M1-M6 help to analyze the overall search space
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creation and navigation of each technique. The definition of the search space size
(M1) for the defect, as well as the definition of an enumerated/ explored patch
(M2), vary for each tool. We include all experiment protocols in our replication
artifact, which describes how to collect these metrics for each tool. M7-M9 assess
the repair outcome, i.e., the identification of the correct patch. We define a patch
as correct whenever it is semantically equivalent to the developer patch from our
benchmark. To check for the correct patch, we manually investigated only the top-
10 ranked patches because our survey concluded that developers would not explore
beyond that. Note that not all techniques provide a patch ranking (e.g., Angelix,
GenProg, and Fix2Fit). In these cases, we use the order of generation as ranking.

3.4.1.5 Hardware

All our experiments were conducted using Docker containers on top of AWS (Ama-
zon Web Services) EC2 instances. We used the c5a.8xlarge instance type, which
provides 32 vCPU processing power and 64GiB memory capacity.

3.4.1.6 Replication

Our replication package contains all experiment logs and subjects, as well as pro-
tocols that define the methodology used to analyze the output of each repair tool.

3.4.2 Evaluation Results

Table 3.5 summarizes our evaluation results. For each APR technique we show its
performance under the given experimental configuration (see Table 3.4). Each cell
shows |PPlaus|/|PCorr|, where |PPlaus| is the number of defects for which the tool
was able to generate at least one plausible patch (i.e., M6), and similarly |PCorr| is
the number of defects for which the tool was able to generate a correct patch among
the top-10 plausible patches. For example, the LibTIFF project has 7 defects, for
which Angelix was able to generate 3 plausible and 1 correct patch for the setup
EC1 (i.e., 1-hour timeout, tool fault localization, and all available test cases). Due
to limitations in its symbolic execution engine Klee [16], Angelix does not support
lighttpd and python, and the corresponding cells are marked with “-”. Additionally,
Table 3.6 presents the average patch exploration/enumeration ratio |PExpl| of the
techniques with respect to the patch space size, computed as a percentage of M2/M1
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for each defect considered in each subject.

3.4.2.1 APR within realistic boundaries

The numbers in Table 3.5 show that the overall repair success is comparably low.
For example, Fix2Fit can generate plausible patches for 14 defects with EC1. Com-
pared to previous studies, the number of plausible patches is significantly lower in
our experiments, mainly due to the 1-hour timeout. Prior research on program
repair have experimented with 10-hours [89], 12-hours [92, 79] and 24-hours [39]
timeouts, and determine if a correct patch can be identified among all generated
plausible patches. The focus of these prior experiments was to evaluate the capabil-
ity to generate a patch, whereas, in our work, we focus on the performance within
a tolerable time limit set by developers.

Table 3.5: Quantitative evaluation of APR results for the various configurations

Subject Def. Angelix Prophet GenProg Fix2Fit
EC1 EC2 EC3 EC4 EC1 EC2 EC3 EC4 EC1 EC2 EC3 EC4 EC1 EC2 EC3 EC4

LibTIFF 7 3/1 3/1 3/1 3/1 1/0 1/0 1/0 1/0 5/0 5/0 5/0 5/0 5/1 4/1 4/1 4/1
lighttpd 2 - - - - 1/0 0/0 0/0 0/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0
PHP 43 0/0 0/0 0/0 0/0 0/0 0/0 2/1 3/1 0/0 0/0 10/1 0/0 8/1 4/2 7/2 5/1
GMP 1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
Gzip 3 0/0 1/0 1/0 1/0 0/0 1/1 1/1 1/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
Python 4 - - - - 0/0 1/1 1/1 1/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
Overall 60 3/1 4/1 4/1 4/1 2/0 3/2 5/3 6/3 6/0 6/0 16/1 6/0 14/2 9/3 12/3 10/2

Each cell shows the number of subjects, for which the technique was able to identify at least one Plausi-
ble/Correct patch with regard to the specific configuration.

RQ4 – Repair Success: Current state-of-the-art repair techniques perform
poorly with a 1-hour timeout and the top-10 ranking restriction. Most techniques
cannot identify any plausible patch for most defects in the ManyBugs bench-
mark.

In general, the repair success of an APR technique is determined by (1) its search
space, (2) the exploration of this search space, and (3) the ranking of the identified
patches. In a nutshell, this means, if the correct patch is not in the search space,
the technique cannot identify it. If the correct patch is in the search space, but
APR does not identify it within a given timeout or other resource limitations, it
cannot report it as a plausible patch. If it identifies the patch within the available
resources but cannot pinpoint it in the (potentially huge) space of generated patches,
the user/developer will not recognize it. By means of these impediments for repair
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success in real-world scenarios, we examine the considered repair techniques. Our
goal is to identify the concepts in APR that are necessary to achieve the developers’
expectations, and hence, to improve the state-of-the-art approaches.

Search Space Table 3.6 shows that Angelix explores almost its complete
search space within the 1-hour timeout, while Table 3.5 shows that it can identify
plausible patches for only one defect (with EC1). As described in [89], the pro-
gram transformations (to build/explore the search space) by Angelix only include
the modification of existing side-effect-free integer expressions/conditions and the
addition of if-guards. Therefore, we conclude that Angelix’s search space is too
limited to contain the correct patches.

Table 3.6: Average exploration ratio |PExpl| for EC1 and EC2.

Subject Angelix Prophet GenProg Fix2Fit
EC1 EC2 EC1 EC2 EC1 EC2 EC1 EC2

LibTIFF 86 100 24 93 1 27 100 100
lighttpd - - 20 100 <1 51 100 100
PHP 96 100 22 96 <1 91 63 80
GMP 100 100 41 100 5 100 - -
Gzip 100 100 6 100 18 100 100 100
Python - - 14 100 1 100 - -
Overall 95 100 21 98 4 78 91 95

The other techniques, on the other hand, consider larger search spaces. Prophet
also considers the insertion of statements and the replacement of function calls.
GenProg can insert/remove any available program statement. Fix2Fit uses
the search space by f1x [89], which combines the search spaces of Angelix and
Prophet to generate a larger search space.
RQ4 – Search Space: Successful repair techniques need to consider a wide range
of program transformations and should be able to take user input into account to
enrich the search space.

Search Space Exploration Prophet and GenProg show a low exploration
ratio with 21% and 4% respectively (see EC1 in Table 3.6) that leads to a low
number of plausible patches. Instead, Fix2Fit fully explores the patch search
space for most of the considered defects (except for PHP), which leads to a high
possibility of finding a plausible patch.
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In contrast to Prophet and GenProg, Fix2Fit performs grouping by their
behavior on test inputs and uses this equivalence relation to guide the generation of
additional inputs. Prophet and GenProg, however, need to explore and evaluate
all concrete patches, which causes a significant slowdown. Reduction of the patch
validation time is possible if we can validate patches without the need to re-compile
the program for each concrete patch [31, 23, 157].
RQ4 – Patch Space Exploration: A large/rich search space requires an ef-
ficient exploration strategy, which can be achieved by, e.g., using search space
abstractions.

Patch Ranking Although Fix2Fit builds a rich search space and can efficiently
explore it, it still cannot produce many correct patches. One reason is that Fix2Fit
can identify a correct patch but fails to pinpoint it in the top-10 patches because
it only applies a rudimentary patch ranking, which uses the edit-distance between
the original and patched program. For instance, Fix2Fit generates the correct
patch for the defect 865f7b2 in the LibTiff subject but ranks it below position 10,
and hence, it is not considered in our evaluation. Furthermore, Fix2Fit’s patch
refinement and ranking is based on crash-avoidance, which is not suitable for a test-
suite repair benchmark such as ManyBugs that does not include many crashing
defects.

We also investigated how many of the correct patches are within the top-5
because 72% of our survey participants strongly favored reviewing only up to 5
patches (see Figure 3.5). We observed that most identified correct patches within
the top-10 are ranked very high so that there is not much difference if a top-5
threshold is applied. Recent work [159, 157] propose to use test behavior similarity
between original/patched programs to rank plausible patches.
RQ4 – Patch Ranking: After exploring the correct patch, an effective patch
ranking is the last impediment for the developer.

3.4.2.2 Impact of additional inputs

Providing Fix Location as User input In Table 3.5, the column EC1 shows
the results with the tool’s fault localization technique, and column EC2 shows the
results by repairing only at the developer-provided (correct) fix location. Intuitively,
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one expects that equipped with the developer fix location, the results of each repair
technique should improve. However, the results by Angelix and GenProg do not
change (except for one more plausible patch with Angelix). From the previous
discussion about the search space, we conclude that the program transformations
by Angelix are the main limiting factor so that even the provision of the correct fix
location has no impact. For GenProg we know from the EC3 configuration that
there is at least one correct patch in the search space (see Table 3.5). Therefore, we
conclude that GenProg suffers from its inefficient space exploration so that even
the space reduction by setting the fix location has no impact. Prophet instead can
generate two additional correct patches in EC2, and hence, benefits from the precise
fix location. The exploration ratio in Table 3.6 shows that Prophet almost fully
explores its search space in EC2, indicating the significantly smaller search space.
Fix2Fit can generate one more correct patch as compared to EC1. Similar to
Prophet, Fix2Fit benefits from the precise fix location and can explore more of
its search space.
RQ5 – Fix Location: Our results show that the provision of the precise and
correct fix location does not necessarily improve the outcome of the state-of-the-
art APR techniques due to their limitations in search space construction and
exploration.

Varying Passing Test Cases To examine the impact of the passing test cases,
we consider the differences between the columns EC2, EC3, and EC4 in Table 3.5.
In general, more passing test cases can lead to high-quality patches because they
represent information about the correct behavior. In line with this, we observe that
more passing test cases lead to less plausible patches because the patch validation
can remove more overfitting patches. For Angelix however, we observe that there
is no difference due to its limited search space. Overall, we observe three different
effects: (a) For techniques with a limited search space (e.g., Angelix), passing
test cases have very low or no effect. (b) For techniques that suffer from inefficient
space exploration strategies (e.g., GenProg and Prophet), having fewer passing
test cases can speed up the repair process and lead to more plausible (possibly
overfitting) patches. (c) Otherwise (e.g., Fix2Fit), variations in the passing test
cases can still influence the ranking. Whether more tests are better depends on
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the APR strategy and its characteristics, as discussed in Section 3.4.2.1. Therefore,
we suggest that APR techniques incorporate an intelligent test selection or filtering
mechanism, which is not yet studied extensively in the context of APR. Recently,
[81] suggested applying traditional regression test selection and prioritization to
achieve better repair efficiency. Further developing and using such a mechanism
represents a promising research direction. Note that in the discussed experiments,
the fix location was defined beforehand. However, if APR techniques use a test-
based fault localization technique (like in EC1), the test cases have an additional
effect on the search space and repair success.
RQ5 – Test Cases: Variation of passing test cases causes different effects de-
pending on the characteristics of the APR techniques. Overall, one needs an
intelligent test selection method.

3.4.3 Threats to Validity

3.4.3.1 External Validity

In our empirical analysis, we do not cover all available APR tools, but instead,
we cover the main APR concepts: search-based, semantics-based, and machine-
learning-based techniques. With ManyBugs [46] we have chosen a benchmark
that is a well-known collection of defects in open-source projects. Additionally, it
includes many test cases, which are necessary to evaluate the aspects of test case
provision.

3.4.3.2 Construct Validity

The metrics in our quantitative evaluation measure the patch generation progress,
measuring repair efficiency/effectiveness via variations in configurations (EC1-EC4).

3.4.3.3 Internal Validity

To mitigate the threat of errors in our setup of the empirical experiments, we per-
formed preliminary runs with a subset of the benchmark and manually investigated
the results.
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3.5 Summary
In this chapter, we have investigated the issues involved in enhancing developer trust
in automatically generated patches. Through a detailed study with more than 100
practitioners, we explore the expectations and tolerance levels of developers with
respect to automated program repair tools. We then conduct a quantitative eval-
uation to show that existing repair tools do not meet the developer’s expectations
in terms of producing high-quality patches in a short time period. Our qualita-
tive and quantitative studies indicate directions that need to be explored to gain
developer trust in patches: low interaction with repair tools, exchange of artifacts
such as generated tests as inputs as well as output of repair tools, and paying at-
tention to abstract search space representations over and above search algorithmic
frameworks.
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CHAPTER 4. ACCELERATING VULNERABILITY REPAIR VIA
COMPILATION-FREE VALIDATION

Chapter 4

Accelerating Vulnerability Repair
via Compilation-Free Validation
Automated Program Repair (APR) aims to automatically repair software bugs with-
out developer (human) intervention. Over the years, many different APR tools and
techniques have been proposed. These include program repair based on symbolic
execution, machine learning, as well as search based repair. For search-based or
Generate and Validate (G & V) based repair, the APR tool searches for and gener-
ates a set of candidate patches at a set of fix locations, subsequent to which these
patches are validated and ranked using a oracle, such as a user-provided test suite.
The search-based repair methodology is popular, and has been implemented by sev-
eral prominent APR tools for C/C++. G&V-based repair known to suffer from some
practical limitations at the validation step in which requires the candidate patch be
applied to the program and recompiled, before tested against the test suite. How-
ever, recompilation can be time consuming, especially if the G&V repair tool needs
to validate thousands of potential patch candidates. In this chapter, we propose to
accelerate G&V-based repair by essentially removing the compilation step, thereby
achieving the goal of Compilation Free program Repair (CFR). Using a combination
of binary rewriting and patch interpretation, we directly validate candidate patches
“on-the-fly” without the need for program recompilation. We show that CFR can
significantly improve the performance of G&V-based repair, with lower validation
latency and much higher validation throughput. This would allow for navigation
of significantly larger search spaces for program repair within a time limit which
is tolerable to developers. Furthermore, a generic CFR system can concurrently
support multiple program repair tools, and can be implemented using a standard
(off-the-self) tool-chain such as binutils/GDB.
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4.1 Overview
In this chapter, we explore a perennial problem in automated program repair, which
hinders the validation step in the repair process, limiting the efficiency of the over-
all repair process. The general APR methodology works by automating various
steps in the typical (manual) debugging workflow, including: fix-localization (i.e.,
where to apply the fix?), patch-generation (i.e., how to fix the bug?), and patch-
validation/ranking (i.e., validate that the patch correctness). Many APR tools are
based on a Generate-and-Validate (G&V) methodology. Here, the basic approach
is to treat APR as a search problem over the space of potential program edits, with
the idea that the “correct” patch/fix must be an element of this space. One known
issue in this approach is that the cost of patch validation can be a significant bottle-
neck [23]. For compiled programming languages, such as C/C++, the patch must be
first applied to the program and recompiled before it can be validated against a test
suite. However, recompilation (including relinking) can be a relatively expensive
operation, possibly in the order of seconds or minutes, depending on the size of
the program. This problem can severely limit both the latency (i.e., time to iden-
tify a plausible patch) and throughput (i.e., number of patches validated per time
budget) of G&V-based repair. As such, many G&V-based APR tools are offline,
meaning that they are intended to be run over several hours, such as overnight, in
order to find useful patch candidates. However, the recent work of [101] shows that
most real-world developers expect answers from APR tools in much shorter time
frames, with 72% of survey respondents preferring not even to wait longer than 30
minutes. We therefore argue that the latency of repair tools is critically important,
especially for real-world adoption, and is something that is largely neglected by
most existing APR research. A low latency design means that APR tools should
validate patches promptly—as soon as patch candidates are generated—providing
the developer with continuous feedback as new candidates are validated.

One way to improve the latency/throughput is to remove the bottlenecks, such
as recompilation, from G&V-based repair. To do so, we propose to replace recom-
pilation with a combination of interpretation and binary rewriting/probing, in order
to remove the compiler-in-the-loop from G&V-based repair—i.e., Compilation Free
Repair (CFR). Compared to recompilation, an interpreter can be low latency with
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a minimal startup time, allowing for patches to be validated immediately upon
generation. Since whole-program interpretation is slow, our proposal uses binary
rewriting/probing to limit the interpreted expressions/statements to those actually
changed by the patch, leaving the rest of the program to use native (compiled)
execution. We show that compilation free repair can significantly improve the la-
tency/throughput of G&V-based repair tools, by an order of magnitude.

In addition to latency/throughput improvements, we show that a CFR-based
system has other benefits. We can design CFR to be generic, meaning that it
can operate independent of the patch generatation frontend(s). In other words, a
single CFR system can drastically improve the efficiency of a variety of program
repair tools, as also shown in our experiments. To do so, we design a CFR-based
backend that accepts patches represented in the standard, human-readable, Unix
diff format; the patches are generated by one or more G&V frontends. The CFR
backend will parse each generated candidate patch, and validate/rank it against the
given test oracle. The generic design makes it easy to port existing G&V frontends,
integrate new patch generation frontends, and to support mixing-and-matching of
different frontends which can run concurrently. In contrast, existing G&V repair
tools tend to implement their own specialized validation solutions. We argue that
this is duplicated effort, and we can consolidate patch validation/ranking into a
single shared framework.

The final technical challenge for CFR is the implementation. We note that
implementing a fully featured interpreter for mature languages, such as C/C++, can
be a non-trivial effort. To this end, we show that CFR can be implemented on top of
standard tools, namely gdb, which have a stable/mature interpreter already built-
in. We present a prototype CFR implementation which translates patch candidates
into an equivalent gdb-script. The test case(s) can be run under gdb, and the
script will intercept and execute the modified patch statements. We show that our
approach is low-latency and high-throughput, with minimal overheads.
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4.2 Motivation
Automated Program Repair (APR) attempts to patch buggy programs without man-
ual intervention from programmer. Over the past decade of research, many different
APR tools and technologies have been developed, including those based onmachine-
learning, constraint-solving, templates, and search-based methods. Many APR tools
are based on a Generate-and-Validate (G&V) methodology, which attempts to gen-
erate a set of candidate patches and, then validate or rank the patches according to
some (possibly incomplete) oracle, such as a test-suite. The validation step requires
a patched version of the program to be built so that it can be evaluated (against the
test-suite). For compiled languages such as C/C++, this is achieved by recompiling
program with the patch applied.

Performance One known problem with the G&V-based repair is the cost of the
recompilation. Depending on the size of the target program, recompilation (includ-
ing re-linking), may take in the order of a few milliseconds up to several minutes for
very large projects. The recompilation costs are the source of significant overhead
for G&V-based repair. Even if the cost of each recompilation is minimized, a typical
G&V program repair tool will need to validate thousands of patches, meaning that
the costs can quickly add up. For example Prophet spent 56.9 minutes for recompi-
lation when attempting to repair CVE-2017-15020 vulnerability in binutils, within
a time-bound of 1 hour, which amounts to 94.8% of total time. Overall, a single
recompilation step takes an average of 2 seconds per compilation step for Prophet
to repair CVE-2017-15020, but the total cost gets accumulated over 1637 candi-
date patch enumerations. Thus, recompilation is the main performance bottleneck
in G&V based automated program repair. To illustrate further, figure 4.1 depicts
the average time spent in recompilation by the prominent repair tools Prophet and
Darjeeling for subjects in the VulnLoc benchmark [122] of vulnerabilities. Overall
repair time is constrained to 1 hour, which clearly shows a significant time from the
allocated budget (50% or more of the 1 hour time budget) is spent on recompila-
tion alone. Note that the time spent on recompilation depends on the search-space
of the repair tool, hence a performance comparison across the tools based on the
recompilation time alone is not meaningful.
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Figure 4.1: Average time spent for recompilation by Prophet and Darjeeling for
subjects in VulnLoc benchmark

The recent work of [101] surveyed over 100 developers regarding their expec-
tations in relation to automated program repair. The results showed that most
developers expect APR tools to provide answers promptly, with 72% of survey re-
spondents preferring to wait no longer than 30 minutes, with the concensus being
that faster is always better. In contrast, most existing APR literature evaluates
tools using a more generous fixed time budget, with 10/12/24 hours being typical.
If we need to run a repair tool for 10-24 hours, its practical usage becomes limited
— such as running the APR tool overnight in the hope of finding a fix the next
day—i.e., essentially a form of offline repair. The results of the survey [101] sug-
gest that it is essential for APR tools provide answers promptly in order to enjoy
more mainstream real-world adoption. We therefore believe that it is necessary to
evaluate the latency of APR solutions (i.e., the how fast the APR tool can generate
a patch?) in addition to the performance over a fixed time budget (throughput).

Optimizations The high cost of recompilation in G&V-based repair has been
recognised previously, and several optimizations have been proposed. For exam-
ple, Prophet [79] attempts to optimize the recompilation process by deferring the
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instantiating of some conditions to validation time, thereby minimizing recompila-
tion. However, this does not remove the compiler-in-the-loop entirely, which still
incurs significant time overhead. Another optimization is super mutant recompi-
lation, which attempts to batch several patches into a single (i.e., “super”) patch,
which can be controlled during validation/test time, e.g., by using a controllable
switch. This is essentially a form batched recompilation, meaning that instead of
recompiling N times, we can recompile once using a super mutant. While this
does reduce recompilation, it is not entirely eliminated. Furthermore, batched re-
compilation means that the patch validation until the batch is generated, which
can degrade latency. Finally, Darjeeling [145] also attempts to minimize recompila-
tion costs by using parallel recompilation (e.g., running multiple virtual containers).
However, this approach can only improve performance under the assumption that
some non-utilized CPU resource (i.e., additional cores) is available. Assuming full
utilization, parallel (re)compilation offers no additional benefit.

Our focus is therefore how to efficiently validate/rank general patches with-
out resorting to specialized solutions. Specialized solutions to mitigate compilation
costs, are somewhat ad-hoc, where each tool implements its own (optimized) patch
validation solution that does not necessarily generalize, resulting in duplicated ef-
fort. Instead, we argue that the concept of test-based patch validation is generic,
meaning that, with the appropriate engineering, a single patch validation backend
can support multiple patch generation frontends, where each frontend can even
support differing underlying methodologies. Rather than specialized optimizations,
we instead propose compilation-free repair (CFR) as a generic optimization that
can benefit any frontend, regardless of the how the frontend works or how it is
implemented. Furthermore, patch candidates can be generated by many differ-
ent methods, including mutation, transplantation, machine learning techniques, or
through program synthesis. It is possible that one method will perform better on
some classes of repair problems, but not others. Rather than expecting the user to
try multiple tools (i.e., trial-and-error), a unified validation frameworks makes it
possible to deploy multiple patch generation frontends at the same time, of which
the best-ranked patch(es) can be presented and selected by the end-user. We can
thus consolidate patch validation into a single framework which is shared by multi-
ple G&V tools, both present and future ones.
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bool bsearch(int *a, int size, int val)
{
  int lo = 0, hi = size-1, mid;
  while (lo <= hi)
  {
    mid = (lo + hi) / 2;
         if (a[mid] < val) lo = mid + 1;
    else if (a[mid] > val) hi = mid - 1;
    else return true;
  }
  return false;
}

(a)

.Lloop:
    cmp %eax,%ebx
    jg  .Lexit
.Lbody:
    lea (%rax,%rbx),%ecx
    shr %ecx
    cmp %edx,(%rdi,%rcx,4)
    jae .Lgeq
    lea 0x1(%rcx),%eax
    jmp .Lloop
.Lgeq:
    ...

(b)

.Lloop:
    cmp %eax,%ebx
    jg  .Lexit
.Lbody:

    cmp %edx,(%rdi,%rcx,4)
    jae .Lgeq
    lea 0x1(%rcx),%eax
    jmp .Lloop
.Lgeq:
    ...

(c)

6c6
< mid = (lo + hi) / 2;
---
> mid = lo + (hi - lo) / 2;

Patch interpreter

(d)

Figure 4.2: An illustration of patch interpretation. Here, (a) is an implementation
of binary-search which contains an integer overflow bug (highlighted), (b) is the
program compiled into assembly, with the instructions corresponding to the buggy
line also highlighted. Both (c) and (d) illustrate the implementation of patch inter-
pretation. Here, the instructions corresponding to the buggy line (c) are replaced
with a call to the patch interpreter. The interpreter executes the replacement line
(d) before returning control-flow back to the main program.

4.3 Compilation-Free Repair
The aim of Compilation-Free Repair (CFR) is to remove the recompilation bottle-
neck of (G&V)-based program repair. To do so, our overall approach is to replace
compilation with low-latency alternatives, specifically an interpreter that can exe-
cute patch statements/expressions. Furthermore, we show that CFR can be made
generic, meaning that a single patch validation backend can support multiple patch
generation frontends, which can run concurrently and be mixed-and-matched. In
this section, we outline the design for our CFR framework. In the next section, we
shall present a practical implementation based on standard tools (binutils).

4.3.1 Removing the Compiler-in-the-Loop

Existing G&V APR tools for C/C++ programs rely on recompilation to create
patched binaries for testing. Modern compilers, such as gcc and clang, use a
complex multi-stage pipeline, including parsing, analysis, optimization, emission,
linking, etc., in order to optimize the runtime performance of the resulting exe-
cutable. Although compiler analysis and optimization can be expensive, this is
usually a once-off investment, since the goal is to emit a compiled program that will
be executed some arbitrary number of times. Thus, the initial time investment for
compilation is amortized over the lifetime of compiled program, and is justifiable.
However, in the case of G&V-based repair, the compiled program is only executed
on a few test cases to validate a patch, meaning that compilation costs can be ex-
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cessive. Even when disabling optimization (with -O0), the (re)linking costs alone
can be prohibitive for this use case.

An alternative to compilation is interpretation, which aims to execute the pro-
gram without compilation into native machine code. A basic interpreter can use a
short pipeline consisting of just parsing and evaluation, meaning that statements/-
expressions can be executed “immediately” with minimal delay, i.e., without waiting
for costly analysis, optimization and linking. This can be useful for applications
where latency is important. For example, gdb’s (print expr) command needs evalu-
ate the C/C++ expression (expr) in an interactive environment. Thus, the expression
will be evaluated immediately using gdb’s built-in interpreter, rather relying on a
compiler. That said, the main disadvantage is that an interpreted program can run
significantly slower than the compiled equivalent, sometimes by orders of magni-
tude.

For the G&V-based repair use case, it is also important to minimize the la-
tency so that candidate patches can be evaluated immediately, without waiting for
recompilation. Furthermore, it is also necessary to not to slow down testing too
much, meaning that whole-program interpretation is not a practical alternative.
Instead, we proposal is to use a hybrid approach, where a low-latency interpreter
is used to execute the expressions/statements changed by the patch—i.e., patch
interpretation—and native (compiled) code is used for everything else.

Patch interpretation An example illustration of patch interpretation is shown
in Figure 4.2. Here, we use a buggy implementation binary search (Figure 4.2 (a)),
which is used to test the membership of a (val) in a sorted array (a). The binary
search algorithm works by repeatedly narrowing a range (lo..hi) of array indices,
until either val is found (success) or the range becomes empty (failure). Each
iteration calculates the midpoint of the range mid=(lo+hi)÷2. However, the naïve
method for calculating the midpoint is well-known to be vulnerable to an integer
overflow error. Specifically, the sub-expression (lo+hi) may exceed the maximum
integer value (INT_MAX). The bug can be fixed by using an overflow-safe method for
calculating the midpoint, as expressed by the following patch:
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6c6

< mid = (lo + hi) / 2;

---

> mid = lo + (hi - lo) / 2;

Here, the patch file uses the standard Unix diff format, where the (6c6) indicates
the location (line 6) that is replaced, the (<) identifies the original line to be deleted,
and the (>) is the replacement line to be added. The replacement calculates the
midpoint using the difference (hi−lo), which cannot exceed the hi value for lo≤hi,
thereby avoiding any potential integer overflow.

Under patch interpretation, we assume that the program has already been com-
piled into a binary executable B, as (partially) shown in Figure 4.2 (b). Here, the
instructions corresponding to the buggy line from Figure 4.2 (a) have also been
highlighted. Given a patch P , patch interpretation works by

1. Diverting control-from to/from the patched program locations, as identified by
the deleted line(s) (<) from the patch file P ; and

2. Interpreting the patched statements/expressions, as identified by the replacement
line(s) (>) from the patch file P .

An example of patch interpretation is illustrated in Figures 4.2 (c) and (d). Here,
the program will execute natively until the patch location is reached, as identified
by the deleted line (<) from the patch file. Next, control-flow is diverted to a low-
latency interpreter, which interprets the replacement line (>). Finally, control-flow
is returned back to the original binary and native execution resumes.

Implementing CFR via patch interpretation faces several implementation chal-
lenges, such as: how to find the instructions corresponding to source lines of code?
how to read and write to source-level variables (lo, hi, mid, etc.)? how to di-
vert control-flow to-and-from the patch interpreter? For these challenges, we will
present (in Section 6.5) a practical solution based on the compiler-generated debug
information in DWARF format (using the compiler -g option).
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Generator

Generator

Generator

...

(a)

Validator6c6
< mid = (lo + hi) / 2;
---
> mid = lo + (hi - lo) / 2;

a = {1,2,3,4,5}
size = 5
val = 10
result = false

(b)

(c)

Validator

Validator

...

(d)

Figure 4.3: Basic workflow illustration. Here, one (or more) patch generation fron-
tends (a) generate candidate patches which are collected into a patch pool (b).
Next, one (or more) patch validation backends (d) validate pooled candidate patches
against the test suite (c) using CFR. The frontends and backends are independent
processes, and can run concurrently.

4.3.2 A Compilation-Free Framework

Patch interpretation forms the basis for CFR, allowing for patches to be validated,
without delay, as soon as they are generated. Furthermore, patch interpretation
accepts a (generic) Unix diff format as input, meaning that patch candidates from
any source can be validated using the same backend, allowing for a compilation-free
repair framework.

Workflow The basic workflow of the CFR framework is shown in Figure 4.3. The
framework consists of one (or more) frontends (Figure 4.3 (a)) that generate patch
candidates, and are used to populate a patch pool (Figure 4.3 (b)). The generated
patch candidates are then validated by one (or more) backends (Figure 4.3 (d))
using the provided test suite (Figure 4.3 (c)). Under this workflow, each frontends
and backends are independent processes, and communicate only via the patch pool.
Each backend process validates candidate patches using the patch interpretation
method as illustrated in Figure 4.2.

The Figure 4.3 workflow is designed to be generic. Since the patch interpretation
backend accepts standard Unix diff format as input, the patch generation frontends
need only to support this format in order to be compatible. As will be shown, we
can readily adapt several existing G&V-based repair tools (namely Prophet, and
Darjeeling) to emit patches in Unix diff format. This design also has the advantage
of consolidation. Previously, each individual G&V tool will implement their own,
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specialized, validation solution. However, this is essentially duplicated effort, and
we can show that a consolidated backend support multiple G&V-based repair tools,
and with better performance.

Finally, the Figure 4.3 workflow is designed to be concurrent. Each frontend can
be viewed as a patch source (producer), and each validation backed can be viewed
as a patch sink (consumer), and the frontends/backends only communicate/syn-
chronize via the patch pool. This allows for each frontend and backend instance to
run as separate (concurrent) processes, which can further improve the overall per-
formance. Furthermore, this design also allows for more than one backend instance
to run concurrently, which can boost the overall validation bandwidth. Finally, it
is also possible to run multiple (different) patch generation frontends at the same
time, essentially making it possible to “mix-and-match” compatible G&V-based
APR tools. Such a configuration can be advantageous for the case when different
frontends have different strengths and weaknesses, depending on the class of bug.

4.4 Implementation
Implementing CFR faces several technical challenges, such as how to find the patch
location/variables? how to divert control-flow to and from the interpreter? Etc.
Furthermore, implementing a fully featured interpreter for a modern language, such
as C/C++, is a non-trivial effort. To address these challenges, in this section we
present a baseline implementation of CFR that is built on top a standard tool,
specifically the gdb debugger.

The first step in our implementation is to is to convert a patch file generated
by the repair back-end into a executable script. Since the input for the patch
validator is a file in Unix diff format, identifying control-flow locations based only
on the textual change, is a challenge, hence we make use of the original source-file
in combination with the patch-file to identify control-flow information. Source-
file provides the necessary control-flow information for the interpreter to inject the
modified behavior during the execution based on the changes in the patch file. For
example consider a patch changing the conditional expression for a if statement,
for which the Unix diff file will only provide the changed lines, however for the
interpreter its also important to identify which locations to change control flow if
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the condition is not satisfied, which will be present in the original source file.
Once we embed control-flow information as meta-data into the source file, the

next step is to convert a patch file generated by the repair back-end into a executable
script. The basic idea is to translate each given candidate patch, represented in Unix
diff format, into an equivalent gdb-script that implements the patch as a set of
gdb commands.

For the example patch from Figure 4.2, an equivalent gdb-script is:
1 s e t pag inat ion o f f
2 s e t d i sab l e−randomizat ion o f f
3 s e t breakpoint pending on
4 break bsearch . c : 6
5 commands
6 s i l e n t
7 s e t var mid = lo + ( h i − l o ) / 2
8 jump bsearch . c : 7
9 end

In general we add initialization configurations for gdb applicable for all candidate
patches, for example setting breakpoint pending to the value on, instructs gdb to
append breakpoints that are not exclusive for the executing binary but may also
be of a linked library. Next, the script instructs gdb to set a breakpoint at the
patch location (bsearch.c:6). For each modified code segment in the source file a
breakpoint will be added to inject the modified behavior at the specified location.
For each breakpoint gdb takes a list of instructions that can be executed as a gdb

command. A snippet of the schema is shown below:

lvalue = expr set var lvalue = expr
f(...) call f(...)

return value return value + continue

if (expr) {...} if (expr) ... end
if (expr) {...} else {...} if (expr) ... else ... end

In order to handle loops, we insert two breakpoints at the beginning and end
of the loop, to effectively control the iteration(s). In our example gdb script shown
above, the commands specify that the mid variable should be updated with the
patched expression (line 7), and that control-flow should resume after the patch
location (bsearch.c:7) at line 8. For patches that modify control-flow such as
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if/while/for statements the control-flow will be updated using the embedded meta-
data provided in the annotated source-file. In our example, the set command will
execute the patched assignment before control-flow is returned to the point imme-
diately after the patch location. This process may repeat if control-flow reaches the
patch location multiple times (e.g., in a loop). Since the gdb set command (and
similar commands) use a low-latency interpreter internally, the gdb-script essentially
implements patch interpretation without recompilation.

Final step is to execute the test case(s) and observe the output to determine
if the candidate patch is passing or failing. We achieve this by simply replacing
the binary file with a bash script that acts as the gdb-driver for the test execution
which will take as argument the gdb script and the input for the test execution.
The test is instantiated dynamically by appending the gdb command run into the
gdb script, and invoking the gdb interpreter.

4.5 Evaluation
We evaluate our approach for compilation-free repair, by extending three prominent
repair tools for C/C++ programs namely Prophet and Darjeeling. We modify these
tools to be able to dump the search space once constructed, for CFR validation by
disabling internal validation mechanisms. For this evaluation, we formulate the
following research questions.

RQ1 How does CFR perform compared to existing recompilation optimizations?

RQ2 Can CFR benefit with parallelize validation to improve the throughput of
existing G&V repair techniques?

RQ3 Can CFR achieve concurrent repair by integrating multiple repair front-ends?

RQ4 What is the impact on CFR performance with multiple-test executions?

4.5.1 Evaluation Setup

In our evaluation, we selected repair tools that employs an optimization technique
for recompilation to boost repair performance. Prophet[79] is a learning-based
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technique that use a correctness model to prioritize and rank the candidate patches,
which also employs aggregated compilation to minimize the cost of recompilation.
Darjeeling implements statement-based transformation based on those introduced
by GenProg[68] and optimizing the repair process using parallel computation via
containerization. In our experiments, we set the search algorithm of Darjeeling to
enumerate over all transformation patches within the search space instead of the
traditional genetic search in GenProg[68].

We use the VulnLoc[122] benchmark which consist of a buggy program with a
failing test-case exposing a security vulnerability. Since passing test-cases are not
available, the performance on this benchmark is highly dependent on the recom-
pilation cost. We also evaluate using ManyBugs[46] benchmark which consist of
a test-suite for each defect that provides insights on the effectiveness of CFR for
test validation. For our experiments we use the subset of ManyBugs benchmark as
defined in [101]. Table 4.1 details the subjects we use in our evaluation.

Table 4.1: Experiment subjects and their details

Benchmark Program Description LOC

VulnLoc

BinUtils GNU Binary Utilities 2.7M
CoreUtils GNU Core Utilities 63K
FFMpeg Media Library 0.9M
Jasper Library for Images 28K
LibArchive Library for Archives 0.1M
LibJPEG Library for JPEG files 42K
LibMing Library for flash files 66K
LibTIFF Library for TIFF files 66K
LibXML2 XML C Parser 0.2M
Potrace Tool for tracing 9K
ZzipLib Library for Archives 8K

ManyBugs
LibTIFF Library for TIFF files 66K
GZip Library for Zip files 491K
GMP Math Library 145K

In our evaluation we collect several performance metrics to compare the effec-
tiveness of using compilation free repair with existing state of the art repair tools.
We define “latency” as the time duration to identify the first plausible patch since
the start of the repair process. Additionally, we measure the throughput of each
tool via “rate” which we define as the number of candidate patches enumerated per
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Table 4.2: Experiment results for comparative analysis of CFR vs recompilation
techniques

Tool Subject Recompilation Compilation-Free Improvement
latency candidates rate latency candidates rate space throughput latency

Prophet

BinUtils 625.00 2967 0.94 12.99 2968 1.69 1.00 1.81 48.11
CoreUtils 64.00 14265 3.96 23.00 33455 8.14 2.35 2.05 2.78
FFMpeg N/A N/A N/A N/A N/A N/A N/A N/A N/A
Jasper 167.00 21626 6.54 145.28 94135 26.05 4.35 3.99 N/A
LibArchive N/A 12969 3.60 6.16 68015 18.86 5.24 5.24 55.01
LibJPEG 450.00 32964 9.15 8.18 57339 15.76 1.74 1.72 4.36
LibMing 349.00 3145 0.87 79.99 24962 6.87 7.94 7.86 4.42
LibTIFF 1126.71 55168 15.50 254.78 345067 95.11 6.25 6.14 N/A
LibXML2 N/A 21880 6.08 50.42 61083 16.93 2.79 2.79 N/A
Potrace N/A 56622 15.72 62.04 201672 55.73 3.56 3.54 N/A
ZzipLib N/A 5969 5.23 271.31 115293 31.97 19.32 6.12 N/A

Darjeeling

BinUtils N/A 123 0.04 13.97 900 1.26 7.32 28.13 N/A
CoreUtils 2210.08 74 0.02 164.14 439 1.11 5.93 58.03 13.47
FFMpeg N/A N/A N/A N/A N/A N/A N/A N/A N/A
Jasper 57.48 411 0.15 25.89 462 1.42 1.12 9.22 2.22
LibArchive 78.03 217 0.06 45.45 709 0.74 3.27 13.24 1.72
LibJPEG 107.18 694 0.18 24.89 853 1.04 1.23 5.83 4.31
LibMing 73.39 77 0.05 46.36 613 0.76 7.96 16.29 1.58
LibTIFF 562.38 360 0.09 36.44 1493 0.98 4.15 10.43 15.43
LibXML2 N/A N/A N/A N/A N/A N/A N/A N/A N/A
Potrace 124.00 682.00 403.00 49.84 682 0.74 1.00 3.96 2.49
ZzipLib 203.43 403.00 0.13 48.62 912 1.27 2.26 9.75 4.18

second. All tools are configured to run in full-exploration mode; which will continue
to generate patches even after finding one plausible patch until the timeout or the
completion of exploring the search space; a plausible patch is one which passes all
given tests. All our experiments were conducted using Docker containers on top of
AWS (Amazon Web Services) EC2 instances. We used the c5a.8xlarge instance type
for RQ1 and RQ2, which provides 32 vCPU processing power and 64GiB memory
capacity. For RQ3 we used the c5a.24xlarge instance type, which provides 96 vCPU
processing power and 192GiB memory capacity.

4.5.2 Comparison with Recompilation (RQ1)

We evaluate the effectiveness of CFR against existing recompilation techniques im-
plemented in program repair. For our evaluation we compare against aggregated re-
compilation (i.e. Prophet) and single patch recompilation (i.e. Darjeeling). Prophet
aggregates patches by selecting a single patch constructed for different patch loca-
tions, constructing a super-mutant and enabling the patch during runtime. In this
evaluation for Darjeeling we used only a single thread since our comparison is on
the performance difference between recompilation and compilation-free validation.

Results of our evaluation is summarized in Table 4.2. Columns “latency”, “can-
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didates”, “ratio” and “rate” represents the average value for each subject in the
benchmark for the specified tool. Column “Improvement” depicts the average per-
formance gain for each tool on each subject, defined as x/y where x is the value
with compilation free validation and y without it. CFR provides a significant per-
formance gain over single patch recompilation. Since there is a compilation time
delay between consecutive patch validations, a compilation-free technique provides
better performance. On average single patch recompilation setup in Darjeeling ex-
plores 6 patches per minute while compilation-free enabled Darjeeling can explore
62 candidate patches per minute, which is an speedup of 10.3x. In terms of time
to find the first plausible patch, single patch recompilation mode on average find
a plausible patch in 427s while compilation-free mode finds a plausible patch in
55s which an improvement of 7.7x. In contrast to single patch recompilation, ag-
gregated recompilation performs better since the recompilation cost per patch is
reduced by distributing over multiple candidate patches. Prophet explores 425 can-
didate templates per minute, with compilation-free validation it explores 1364 patch
templates per minute, which is an speedup of 3.2x. In terms of time to find a plau-
sible patch, Prophet in recompilation mode find a plausible patch in 463s while
compilation-free mode finds a plausible patch in 87s which an improvement of 5.3x.
CFR provides performance gain over selective aggregated recompilation because
aggregated recompilation there is a cost in latency since validation can be done
only after the selecting a list of candidates patches from search space enumeration.
Whereas, CFR can validate a patch concurrently as the enumeration progress. Al-
though aggregated compilation has high throughput it is specialized for a specific
tool, while a compilation-free approach can be generic to any repair tool.
RQ1 – Comparison with Recompilation: Compilation-Free Repair can
achieve maximum speedup of 10.3x for throughput and 7.7x for latency in com-
parison to sequential recompilation.

4.5.3 Parallel Validation (RQ2)

In this experiment, we evaluate the overall end-to-end performance improvement by
analyzing the throughput of each repair tool with different configurations. We eval-
uated each tool with recompilation and compilation-free validation. For CFR mode
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Figure 4.4: Throughput of Darjeeling and Prophet
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for each tool we employed sequential validation and parallel validation. Figure 4.4
presents the summarized results where each sub-figure depicts the throughput of
each tool for different configurations. The horizontal axis presents the bugs and
the vertical axis presents the throughput in patch per minute. Figure 4.4a presents
the results for Darjeeling, where recompilation mode was configured Darjeeling to
utilize 32 threads and Figure 4.4b presents the results for Prophet.

Darjeeling on average can validate 6 patches per minute using a single thread
whereas using 32 threads improves the throughput to 49 patches per minute which
is an improvement of 8.1x. Although parallelization using containers does provide
performance improvement for throughput by over an order of magnitude, it does
not improve better than compilation-free repair in sequential validation. In-fact,
compilation-free repair with sequential validation provides similar results (i.e. 10.4x
speedup) with less resource usage. Combining parallelization with compilation-free
validation it can speedup to 825x times than a single thread performance. Prophet
implementation of selective aggregated compilation performs better than Darjeeling
since it enables to validate multiple patches in a single recompilation. Prophet
enumerates 6 patch templates per second which results in an average latency of 463
seconds, with compilation-free parallelized validation it can validate 54 templates
which is an improvement of 8x.
RQ2 – Parallel Validation: Compilation-Free Repair with Parallelism can
achieve maximum speedup of 825.69x for throughput and 17.41x for latency in
comparison to sequential recompilation.
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4.5.4 Concurrent Repair (RQ3)

In this experiment we evaluate the effectiveness of concurrent repair of multiple
repair front-end integration. For this purpose, we integrate several repair tools
into one framework that concurrently explores its own search-space generating can-
didate patches that will be evaluated using compilation-free validation back-end.
The framework is implemented using the producer/consumer design pattern in
concurrent systems as shown in Figure 4.3. The repair tools will act as a front-
end/producer that generates candidate patches as it explores the search-space de-
fined by its enumeration strategies. A consumer that implements compilation-free
validation will take each generated patch and validate concurrently. For this ex-
periment we use 200 validation consumers while using one producer for each repair
tool with total of 3 producers. Table 4.3 summarize the results of our experi-
ments. Columns “tp”, “Candidates”, and “Rate” represents the average value for
each subject in the benchmark. Column “tp” reports the average time taken to find
a plausible patch, while the column “Rate” reports the average number of candidate
patches validated per second.

Table 4.3: Experiment results with multiple repair integration

Subject tp Candidates Rate
Binutils 37.99 58609 17.97
Coreutils 25.32 127504 40.37
FFMpeg N/A N/A N/A
Jasper 13.18 53728 30.07
LibArchive 9.65 71145 19.31
LibJPEG 14.16 113818 31.88
LibMing 20.15 84390 31.87
LibTiff 73.85 114248 36.31
LibXML2 52.54 93213 25.59
Potrace 6.30 88162 24.29
ZZipLib 9.73 34821 39.10

The integrated solution was able to repair most of the defects in the benchmark,
for which fixes originated from different repair tools. The defects in FFMpeg sub-
ject was not repaired by any of the tool since the bug was not reproduced by the
provided failing test-case. The average time to find a plausible patch is 26.9s with
an average throughput of 29.68 patches per second. A combination of the strength
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of different tools provides a coherent search for the defect, that can quickly identify
and present a plausible patch to the developer for further analysis. A lightweight
ranking based on the coverage information shows the top-10 ranked patches for
some defects comprise of patches generated from different tools. Furthermore, the
ranking is continuously updated as and when a new patch is generated, providing
the capability of real-time ranking of plausible patches. To the best of our knowl-
edge, this is the first repair system that integrates multiple repair front-ends to
achieve concurrent repair, whereby multiple repair tool simultaneously search over
different search spaces.
RQ3 – Concurrent Repair: Concurrent repair with multiple repair front-end
integration can be achieved using a unified validation framework via compilation-
free repair.

4.5.5 Impact of Multiple Tests (RQ4)

In this experiment, we evaluate the impact of having multiple test-cases on the
effectiveness of compiler-free validation. We evaluated each tool with recompilation
and compilation-free validation. For CFR mode for each tool we employed parallel
validation. Table 5.3 presents the summarized results the throughput of each tool
in terms of patches validated per second for different configurations. Results for
Darjeeling is generated using 32 threads. For this evaluation we make use of a
subset of the the popular test-suite repair benchmark ManyBugs [46]. In addition
to the criteria specified in recent evaluations [101], we further filter the subjects for
which the test-suite can be executed in parallel.

Table 4.4: Experiment results with multiple test-cases

Tool Subject Throughput
Original CFR Speedup

Prophet
LibTIFF 11.5 63.37 5.5
GZip 3.37 21.42 6.35
GMP 2.14 17.66 8.25

Darjeeling
LibTIFF 0.39 7.71 19.76
GZip 1.05 18.56 17.67
GMP N/A N/A N/A

Patch validation with multiple test-cases impacts both recompilation and non-
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recompilation performance. However, compilation-free repair is still able to achieve
performance gain over recompilation for Prophet and Darjeeling with an average
speedup of 6.7x and 18.7x respectively.
RQ4 – Impact of Multiple Tests: Multiple test-cases degrades overall
throughput of repair, however compilation-free validation still provides signifi-
cant performance gains.

4.6 Threats to Validity
There are several threats to validity of our approach, related to the external tools
we use and the datasets that we use in our experiments. In our evaluation we
do not cover all repair tools available, instead we cover the main recompilation
strategies employed to minimize the validation cost: parallel compilation, sequen-
tial compilation and aggregated compilation. We seek to mitigate dataset bias by
conducting our experiments on a wide variety of subjects including those studied by
previous work. We chose VulnLoc [122] and ManyBugs [46] benchmarks which are
well-known collection of defects in open-source projects. Using VulnLoc benchmark
which only include one failing test-case provides insight into security vulnerability
repair and ManyBugs benchmark provides insight into test-suite based repair. In
addition, our experimental results explore the capability of repair tools to produce
patches within a 1-hour timeout in contrast to related work. We use a 1-hours
timeout based on the recent study which indicates developers prefer a maximum of
1 hour for automated repair tools [101].

On Search space representations We would also like to clarify that the con-
tributions of this work are in speeding up search-based repair tools, which proceed
on an explicit representation of the search space. Accordingly we have chosen two
search-based repair frameworks: Prophet and Darjeeling. Prophet uses enumera-
tive search to navigate a search space of patch candidates (along with use of ma-
chine learning to rank patch candidates which is not important for our purposes).
Darjeeling is a search based repair framework produced by the GenProg research
team which can plug and play different repair tools, notably GenProg which can
use either enumerative or meta-heurisitic search. The Darjeeling implementation
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we worked with is based on the same explicit search space of patches and mutation
operators as GenProg. Both Prophet and Darjeeling, we have shown significant per-
formance improvements. However, apart from explicit generate-and-validate repair
tools which work on explicitly represented search spaces, there are other repair tools
which work on implicit representations of the search space of patches. This includes
F1X [89] which uses value/dependence-based equivalence relations to represent the
patch space, or SemFix [100], Angelix [92] which use symbolic representations of
the search space. We make no claims of performance improvement (or performance
reduction) with respect to these tools which work on an implicit representation of
the search space. To study the performance issues with respect to such tools would
need a study of several factors, including (a) whether the implicit representation of
the patch space is built at once or on-the-fly, (b) whether the implicit search space
representation construction is dependent on run-time artifacts (hence necessitat-
ing compilation) or compile-time artifacts, and so on. Understanding these issues
can be a topic of future work; they have not been investigated in this paper. Our
performance improvement claims and results only pertain to generate and validate
program repair tools working on explicit search space representations.

4.7 Summary
Patch validation is one of the steps in program repair specifically for generate and
validate techniques whereby candidate patches are validated using a suitable test
oracle. A key step for validation is recompilation which translates the candidate
patch into an executable binary that can be tested against a test oracle. Incremental
recompilation per patch is low in cost, however accumulated over thousands of
candidate patches the cost is significant especially for program repair under time
constraint. In this chapter, we look at a compilation-free validation technique that
replace the compiler from the repair-loop with a lightweight interpreter that is
able to achieve the same result at a low cost. Using on-the-fly patch validation
with existing program repair tools for C/C++ programs we show the benefits of
compilation-free repair. We show the benefit of a concurrent repair framework
that integrates multiple repair tools with a single validation back-end to improve
throughput and latency in program repair. The experimental results using Prophet
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and Darjeeling show that CFR can improve the overall performance of APR using
such an integration to work concurrently which can simultaneously explore multiple
search spaces thus enabling repair to access a larger search-space by over an order
of magnitude compared to existing repair tools.
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CHAPTER 5. VULNERABILITY REPAIR USING A
PROGRAM-SPECIFICATION

Chapter 5

Vulnerability Repair
using a Program-Specification
Automated program repair reduces the manual effort in fixing program errors. How-
ever, existing repair techniques modify a buggy program such that it passes given
tests. Such repair techniques do not perform well for specific program errors such
as security vulnerabilities which does not provide a large-enough test-suite to infer
a specification for the program repair. Hence, existing state-of-the-art test-driven
repair techniques generate a large set of plausible patches that are overfitting the
provided test-cases and do not mitigate the security vulnerability entirely. We pro-
pose a novel approach that takes into account a user-provided specification that
can guide the repair process while reasoning the semantic correctness of the gen-
erated patches with respect to the provided program specification. This chapter
introduces concolic program repair for integrating a user-provided specification
to guide the repair process and shows how it can improve the state-of-the-art re-
pair tools to generate high-quality repair for security vulnerabilities. The chapter
starts with an overview of our approach on how repair can be guided to fix secu-
rity vulnerabilities using a program-specification. It continues with an illustrative
example that shows the advantages of concolic program repair and afterwards pro-
vides a discussion of the technical details. The chapter concludes with a preliminary
evaluation of the effectiveness of our novel approach in repairing reported security
vulnerabilities in large-scale real-world software applications.

72



5.1 Overview
In this chapter, we reflect on the problem of patch overfitting [110, 133, 80] in pro-
gram repair, in order to produce high-quality patches for security vulnerabilities
which does not provide sufficient test-cases to mitigate the problem of patch over-
fitting. To reduce exposure of software security vulnerabilities, it is essential to
generate patches quickly, especially for time-critical software vulnerabilities. Auto-
mated program repair can generate patches quickly but does not provide correctness
guarantees, which is of essence to remedy exploits of the security vulnerability. Our
goal is to devise a repair technique that is of any-time patching algorithm; the al-
gorithm can be stopped at any time. However, the longer it is run, the greater is
the coverage of the input space, and the greater is our confidence that the patch
produced works for a large class of test inputs. To ensure coverage of the test input
space, we use concolic path exploration for automated test generation.

We use concolic execution [42] to generate test inputs, and additionally to gen-
erate constraints for the patch refinement, to make them work for those test inputs.
We leverage a user-provided specification to detect incorrect behavior for the gen-
erated test inputs. Such specification does not need to be a full specification with
regard to the program’s correctness. Partial specifications like an assertion at a
specific location, or the absence of crashes in a specific location, can be already
sufficient to detect overfitting patches. Our outlook is to use concolic execution for
computing path constraints and patch constraints at the same time. By making
the symbolic execution technology serve such a dual purpose, we can systematically
traverse a large portion of the test input space, and find out patch patterns which
work for those traversed test inputs. Given a longer time budget, we obtain greater
path coverage, and rule out a large number of patch candidates, thereby reducing
overfitting in program repair.

Realizing such a dual-purpose usage of symbolic execution, requires us to over-
come many technical challenges. First, our symbolic execution engine needs to com-
pute path constraints containing both input variables and patch variables. Though
the patch variables are higher order variables, we avoid developing a second order
symbolic execution engine for scalability reasons. Instead we provide a first order
encoding of path constraints and patch constraints which contain (first order) input
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variables along with certain additional parameters to succinctly represent sets of
patches. Secondly, and more importantly, there are additional sources of path in-
feasibility as compared to traditional concolic/symbolic execution, in our setup. In
traditional concolic execution, a path is deemed infeasible if the path constraint is
unsatisfiable. In our setup, the path contains a hole for the patch location, and we
maintain a pool of patch candidates which diminishes as more paths are explored.
Hence if none of the remaining patch candidates can be inserted into the patch
location, we also deem the path as infeasible.

The benefits of our concolic approach for patch generation are shown by the ex-
perimental evaluation of its efficacy in repairing a large set of security vulnerabilities
curated in recent works [40] based on Google’s OSS-Fuzz infrastructure. The tool
embodying our concolic program repair approach is called CPR, an abbreviation
indicating the resuscitation of programs via appropriate fixes.1

We propose the path exploration in concolic execution as a mechanism to tra-
verse the program input space and patch space simultaneously. The main insight is
that simultaneous exploration of input and patch space helps tackle patch overfit-
ting, which is a key problem in the area of automated program repair [110, 133] and
a necessity to generate quality-patches for security vulnerabilities. Our repair tool
CPR generates correct patches for a variety of specifications or oracles including
crash-freedom (absence of observable vulnerabilities), and satisfaction of assertions
— as shown by our experiments.

5.2 Example
In this section we show the advantages of concolic program repair by illustrating

its usage for the repair of a security vulnerability in a real-world application. We
make use of the security vulnerability reported as CVE-2016-3623 discovered in
the LibTIFF library v4.0.6 (see Listing 5.2). LibTIFF is a popular open-source
library that provides support for the Tag Image File Format (TIFF), a widely
used format for storing image data. CVE-2016-3623 represents a divide-by-zero
vulnerability, which allows a remote attacker to cause a denial of service by setting
malicious inputs to the program rgb2ycbcr. Listing 5.2 depicts the relevant code

1Resuscitating a program, like what Cardio-pulmonary Resuscitation (CPR) does to a patient.
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Input Space Patch Space
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P2
P3

P4

P1

P2
P3

P4

Initial test input
x=7, y=0 ID Patch Template Parameter Constraint # Conc. Patches

1 x >= a a ≥ -10 ∧ a ≤ 7 18

2 y < b b ≥ 1 ∧ b ≤ 10 10

3 x == a || y == b (a=7 ∧ b ≥ -10 ∧ b ≤ 10) ∨
(b=0 ∧ a ≥ -10 ∧ a ≤ 10) 

41

Patch Details

ID Patch Template Parameter Constraint # Conc. Patches

1 x >= a a ≥ -10 ∧ a ≤ 4 15

2 y < b b ≥ 1 ∧ b ≤ 10 10

3 x == a || y == b b=0 ∧ a ≥ -10 ∧ a ≤ 10 21

ID Patch Template Parameter Constraint # Conc. Patches

1 x >= a a ≥ -10 ∧ a ≤ 0 11

2 y < b False 0

3 x == a || y == b a = 0 ∧ b = 0 1

ID Patch Template Parameter Constraint # Conc. Patches

1 x >= a False 0

3 x == a || y == b a = 0 ∧ b = 0 1

P1: x > 3 ∧ y ≤ 5 ∧ ¬C

P2: x ≤ 3 ∧ y > 5 ∧ ¬C

P3: x ≤ 3 ∧ y ≤ 5 ∧ ¬C

Ⅰ

Ⅱ

Ⅲ

Ⅳ
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46

12

1

correct patch

plausible 
patches

P1

P2
P3

P4
P4: x > 3 ∧ y > 5 ∧ C

Ⅴ

1

ID Patch Template Parameter Constraint # Conc. Patches

3 x == a || y == b a = 0 ∧ b = 0 1

x = horizSubSampling, y = vertSubSampling, C = CONDITION
Illustrative concolic exploration for example CVE-2016-3623 in Listing 5.2 as the simultaneous

exploration of the input space and the patch space. The rows I, II, III, IV, and V represent multiple
exploration steps. The columns show the increasingly covered Input Space, the decreasing Patch Space,
as well as more details on the identified patches. The patch space is in general limited by the synthesis
language (denoted by the rectangular around the patch space illustration). The number on the top right
of the patch space illustration denotes the total number of concrete patches included in this patch space.

Figure 5.1: Illustration of Concolic Program Repair

........
250 static int
251 cvtRaster(TIFF* tif, uint32* raster, uint32 width,

uint32 height)
252 {
253 uint32 y;
254 tstrip_t strip = 0;
255 tsize_t cc, acc;
256 unsigned char* buf;
257 uint32 rwidth = roundup(width, horizSubSampling);
258 uint32 rheight = roundup(height, vertSubSampling);
259 uint32 nrows = (rowsperstrip > rheight ?

rheight : rowsperstrip);
260 uint32 rnrows = roundup(nrows,vertSubSampling);
261 if (CONDITION) return 0;
262 /* potential divide-by-zero error */
263 cc = rnrows*rwidth + 2 * ((rnrows*rwidth)

/ (horizSubSampling*vertSubSampling));
........

278 }

Figure 5.2: CVE-2016-3623: Divide by Zero in LibTIFF v4.0.6
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snippet, which could lead to a divide-by-zero error at line 263 if the two variables
horizSubSampling and vertSubSampling are not sanitized for invalid inputs. We
have added a fix template in line 261, where the condition can be generated using
most state-of-the-art repair tools.

Repair process. Concolic program repair works on a high-level in three phases:
(1) patch pool construction, (2) path exploration, and (3) patch reduction. The
phases (2) and (3) are performed in an alternating manner: The path exploration
provides input partitions (in form of path constraints), and the patch reduction re-
fines abstract patches and rules out patches that fail the user-provided specification
for the current input partition.

Illustration. Figure 5.1 illustrates the simultaneous space reduction (i.e., the
interplay between path exploration and patch reduction): as we explore the input
space, we are able to narrow down and refine the patch space (steps I, II, III, and
IV), while at the same time we leverage the patch space to skip parts of the input
space, which are not feasible with the available patches (step V). Therefore, each row
I, II, III, IV, and V in Figure 5.1 represents an exploration step, which represents
an increase of the input space coverage and a potential reduction of the patch space.
The input space for this example is partitioned into 4 compartments P1, P2, P3,
and P4, which are defined by the corresponding path constraints. Note that the
constraints in Figure 5.1 show only the relevant parts for this example and further
assume a control location, which compares the relevant variables horizSubSampling
and vertSubSampling with the given constants. These path constraints are chosen
artificially for this example (since details of roundup are not shown). As mentioned
in Figure 5.1, we refer to horizSubSampling and vertSubSampling as x and y

respectively as a notational short-hand. Our patch space is generally limited by the
synthesis language (denoted by the rectangle around the patch space illustration).
In order to illustrate the overall reduction in terms of concrete patches, the box
in the top right corner of the patch space shows the total number of concrete
patches included in this patch space. Please note that Figure 5.1 does not show
the exploration of all possible input partitions, and hence, shows only a part of the
input exploration for illustration purposes.
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Patch pool construction. In this example, our approach starts with synthesiz-
ing a set of plausible patches based on an initial test case with x=7, y=0 (see step
I in Figure 5.1). We assume that the user-defined specification states that there
should be no divide-by-zero error at line 263 in Listing 5.2, i.e., that x ∗ y 6= 0. The
set of plausible patches is shown as the oval in the Patch Space column. Note that
we assume that the correct patch is included in this set. The table on the right side
of Figure 5.1 shows an illustrative list of patch templates (aka abstract patches)
generated by our synthesizer. As abstract patches we consider boolean and integer
expressions, which include program variables (e.g., x and y) and parameters (e.g.,
a and b). During the repair process, the parameter values are captured by a cer-
tain constraint (see column Parameter Constraint), which covers a set of concrete
patches and limits the search space. The column # Concr. Patches show how many
concrete patches are covered by the corresponding abstract patch. For this illustra-
tive example, we assume that the parameter values are initially in the range [-10,
10]. The constraints shown in the table are already modified by the synthesizer to
pass the initial test case. In the following paragraphs, we will provide more detailed
information on the interplay between path exploration and patch reduction.

Input partition P1 for patch 1. Starting with the initial input, concolic exe-
cution provides us with the input partition P1 (defined by the corresponding path
constraint). Step II in Figure 5.1 represents the first repair iteration. For every
abstract patch, we check whether a violation of the specification is feasible with the
current path constraint. If yes, we try to refine the constraint on the parameter
values. The light-grey shaded area in the patch space indicates the refinement to
the patch space as we explore the respective path of P1. In order to refine patch 1,
we search for models of:

x > 3 ∧ y ≤ 5 ∧ ¬(x ≥ a) ∧ a ∈ [−10, 7]︸ ︷︷ ︸
path constraint P1 complemented with

patch 1

∧ (x ∗ y = 0)︸ ︷︷ ︸
condition for
specification
violation

Every satisfying assignment reveals a possibility to violate the specification with the
current path constraint and patch 1. In order to make this formula unsatisfiable, we
need to remove the values {5, 6, 7} from the constraint on a. Therefore, the refined
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variant of patch 1 is: x ≥ a with a ∈ [−10, 4] (see table on the right side of row II
in Figure 5.1). This refinement removes 3 concrete patches from the patch space.

Input partition P1 for patch 2. In order to test patch 2 on the input partition
P1, we again first check whether it is possible to violate the specification with the
current path constraint and patch 2. The formula to test would be: x > 3 ∧ y ≤
5 ∧ ¬(y < b) ∧ b ∈ [1, 10] ∧ (x ∗ y = 0). However, this formula is unsatisfiable, and
hence, patch 2 cannot be refined in this step.

Input partition P1 for patch 3. For patch 3 we need to test: x > 3 ∧ y ≤
5 ∧ ¬(x = a ∨ y = b) ∧ (a = 7 ∧ b ∈ [−10, 10] ∨ b = 0 ∧ a ∈ [−10, 10]) ∧ (x ∗ y = 0).
For this formula, only y = 0 is the feasible condition for a violation. Therefore,
all parameter value combinations, for which b 6= 0 are models for a specification
violation and need to be removed from the parameter constraint during refinement.
The resulting parameter constraint is: (a = 7 ∧ b ∈ [0] ∨ b = 0 ∧ a ∈ [−10, 10]),
which can be simplified to b = 0 ∧ a ∈ [−10, 10].

Exploration of P2 and P3. In order to generate a new input, the current path
constraint of P1 can be mutated, e.g., by flipping constraints in P1 (as in concolic
execution), and solved with an SMT solver. For example, we could retrieve the
input x=0, y=6 corresponding to the path constraint P2: x ≤ 3 ∧ y > 5 ∧ ¬C (see
step III in Figure 5.1). While exploring P2, the parameter constraint in patch 1
can be refined to a ∈ [−10, 0]. Patch 2 does violate the specification for P2 for all
available parameter values. Therefore, patch 2 cannot be refined and needs to be
removed in step III. Finally, the parameter constraint in patch 3 can be refined to
a = 0 ∧ b = 0, i.e., there is only one concrete mapping left for this patch. In fact,
patch 3 now is semantically equivalent to the correct patch. Step IV in Figure 5.1
shows one final step, where patch 1 can be removed and patch 3 remains as the
correct patch.

Non-Exploration of P4. Step V in Figure 5.1 shows the consideration of P4
with the path constraint x > 3∧y > 5∧C. One of our key ingredients is, when gen-
erating a new input, we ensure the feasibility of the corresponding path constraint
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by selecting an appropriate patch from our patch pool. The above mentioned path
constraint for P4 is satisfiable; however, our approach would not explore it because
there is no patch in the current patch pool, which would allow taking this path.

Advantages of concolic program repair. Our approach has the major advan-
tage to explore both spaces, input and patch, simultaneously, saving a significant
cost in terms of time and space enumeration: (1) we refine the patch space based
on the exploration in the input space, while (2) we also can rule out parts of the
input space, which contradicts with the patch space. We are able to reason about
a large portion of concrete patches with every single iteration of concolic execution
by using abstractions in the patch space. For example, with three repair steps (II,
III, and IV) we can reduce the patch space by 68 concrete patches. In general, the
more paths we explore, the better the refinement would be, thus finding the most
accurate patch. Furthermore, instead of focusing only on specific inputs but rather
on the obtained path constraint, we are able to test a large portion of the input
space captured by an input partition. Additionally, as illustrated in our example,
our approach performs some path reduction: during concolic exploration, we make
sure that for every new generated input, there is at least one patch in the current
patch pool, which can exercise the corresponding path. Otherwise, the path will
not be explored.

In conclusion, these advantages allow us to reduce the pool of candidate ex-
pressions, as compared to existing state-of-the-art techniques like counterexample-
guided inductive synthesis (CEGIS) [134, 135] and ExtractFix [40].

5.3 Methodology
Our proposed workflow concolic program repair incrementally explores the input
space, while refining the patch space. The workflow involves symbolic execution,
patch synthesis and concolic exploration. In this section, we discuss each phase in
more detail.
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5.3.1 Patch Definition

Our technique supports two notions of patches: concrete and abstract. An abstract
patch represents a patch template, which contains parameters that can have values
satisfying a specified constraint. Concrete patches do not include such parameters.
Our methodology focuses on abstract patches because, having abstract patches, the
repair process needs to generate and maintain a smaller amount of patch candi-
dates. Furthermore, the patch space reduction can attempt to refine the parameter
constraints before discarding a patch. Therefore, we define a patch ρ as the 3-tuple

(θρ, Tρ, ψρ)

with the set of program variables XP , the corresponding subset of input variables
X ⊆ XP , and the set of template parameters A:

• θρ(XP , A) denotes the repaired (boolean or integer) expression

• Tρ(A) represents the conjunction of constraints τρ(ai) on the parameters ai ∈
A included in θρ:

Tρ(A) =
∧
ai∈A

τρ(ai)

• ψρ(X,A) is the patch formula induced by inserting the expression θρ into the
buggy program

This patch definition covers both notions abstract and concrete. For concrete
patches the set of parameters A is either empty and Tρ is trivially True, or the
constraints on the parameters ai ∈ A allow only one concrete value each.

Example. Assuming a buggy location in a program like if(ρ)then..else..,
where the patch ρ is included in the if condition. Then a repaired expression could
be θρ := x > a with the parameter value constraint Tρ = τρ(a) := (a ≥ −10∧a ≤ 10)
and the corresponding patch formula ψρ := x > a.

Patch Formula. In our notation ψρ does not represent the patch expression but
rather the constraint induced by the patch. For our approach a patch is technically
represented as an expression tree, which can be transformed into an SMT formula,
by considering the semantics of the operators (or components) appearing in the
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expression θρ. The information about the patch location (i.e., where the repaired
expression will be inserted) and the transformed expression tree is what we call
the patch formula. Therefore, if the patch represents the right hand-side of an
assignment like y=ρ with θρ := x − a, then the patch formula is derived as ψρ :=
y = x− a, using the patch context information. We acknowledge that such a patch
formula is generally not required for the definition of a patch. In fact, the patch
formula can be derived from combining the information about the patch location
and the patch expression (see Section 5.3.2.3). However, our approach technically
requires such an artifact in order to reason about the patch.

5.3.2 Concolic Repair Algorithm

As input, our approach requires the buggy program, a repair budget, the fault
locations, a user specification, the language components for the synthesis, and op-
tionally, a set of initial test cases. The user specification identifies a constraint on
the desired program behavior (in addition to satisfying the given test cases). It does
not need to be a complete formal specification of the correct program behavior, but
represents a constraint on the expected observation, provided as a logical formula.
For example the user can assert crash-freedom or some specific logical behavior (e.g.,
a constraint on the resulting output). If no error-exposing input is available, we
need to generate at least one failing input (with regard to the user-provided speci-
fication) to start the concolic exploration. Therefore, we can use offline techniques
like Directed Greybox Fuzzing [13]. Note that the generation of the one failing test
is a pre-processing to our technique. Otherwise, we assume that at least one failing
test is available, which our method seeks to repair, apart from making sure that the
user-provided specification holds for all paths traversed via concolic exploration.

As output our approach produces a set of patches, which satisfy the initial test
case (repairing the given failing test case, if one is available) and which do not
violate the given specification for (a subset of, depending on the repair budget) the
other paths of the program. The patches are ranked based on the evidence we see
during input space exploration.

Algorithm 1 shows the general workflow of concolic repair, which implements
three phases: (1) patch pool construction (see Section 5.3.2.1), (2) path exploration
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Algorithm 1: General Concolic Repair
Input: set of initial test cases I, buggy locations L = (patchLoc, bugLoc),

budget b, specification σ, language components C
Output: set of ranked patches P

1 P ← Synthesize(C, I, L)
2 while P 6= ∅ and CheckBudget(b) do
3 t, ρ ← PickNewInput(P )
4 if no input t available then
5 return P
6 end
7 φt, hitpatch, hitbug ← ConcolicExec(t, ρ, L)
8 if hitpatch then
9 P ← Reduce(P , φt, σ, hitbug)

10 end
11 end
12 return P

(see Section 5.3.2.2), and (3) patch reduction (see Section 5.3.2.3). The initial phase
of synthesis produces a pool of patches P (see line 1 in Algorithm 1) by leveraging a
component-based synthesizer. This patch pool is going to be refined in the following
repair loop (see line 2 to 11). The repair loop itself will be continued as long as
there are remaining patches to refine or the repair budget is not exceeded. In phase
(2) (i.e., inside the repair loop), we pick a new input t to explore more program
paths (see line 3). With input t we also retrieve a patch candidate ρ from the patch
pool P , such that inserting ρ in the patch location allows t to have a feasible path
in the patched program. If there is no such input t available, then there is no more
input space to explore and the algorithm will return the identified patches (see line
4 to 6). Otherwise, we perform a concolic execution of the program with input t,
patch candidate ρ, and the information about the:

• patch location, where the repair is located and

• bug location, where the buggy behavior is observable.

It results in the path constraint φt and whether the patch location (hitpatch) and the
bug location (hitbug) have been exercised by the execution (see line 7). Afterwards,
in phase (3), we aim to reduce the patch pool P based on the current observations
and the given specification σ. Before calling the Reduce function in line 9, we
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check whether the current path actually exercises the patch location (see line 8),
otherwise there is no reduction possible.

5.3.2.1 Patch Pool Construction

In order to generate the initial patch pool P we leverage a component-based syn-
thesizer, which focuses on the synthesis of boolean and integer expressions. Our
approach assumes that the necessary patch-ingredients are provided as input to our
technique. This includes the available program variables and the arithmetic/com-
parison operators for the synthesis. Before starting the actual synthesis we employ
a controlled symbolic execution [92] to retrieve the path constraints for the initial
test cases. Therefore, we mark the patch variables as symbolic at the patch loca-
tion. The result of this symbolic execution is a set of path constraints with their
corresponding expected outputs given by the test cases.

The synthesis starts with generating a set of expression trees based on the avail-
able components and the required expression type at the patch location. We support
the arithmetic operations {+,−, ∗, /} as well as the remainder operation, the com-
parison operators {=, 6=, <,≤, >,≥}, the boolean operators {∧,∨,¬}, and usage of
parameters like {a, b, c, ...}. More components can be easily added to our synthe-
sizer by providing them in the SMT-LIB format. For example, for each program to
be repaired, the available variables are provided as additional components to the
synthesizer. The final set of expression trees contains all feasible combinations of the
given components that fit the required expression type. Afterwards, the synthesizer
enumerates over these trees and validates that the corresponding expressions repair
the program for the constraints retrieved by the controlled symbolic execution. All
successfully validated expression trees will be put in the resulting patch pool. If
the expression tree includes parameters, the synthesizer will generate a constraint
on these parameters (based on a pre-selected range).

5.3.2.2 Path Exploration

The path exploration is concerned with two issues: (a) how to pick a new input
t and (2) how to efficiently retrieve the corresponding path constraint φt. In the
first loop iteration the new input is chosen based on the provided test cases or
randomly if there are no test cases available. Afterwards, based on the previous
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Algorithm 2: Reduce function
Input: patch pool P , path constraint φ, specification σ, bug location hit

hitbug
Output: reduced patch pool P ′

1 P ′ ← P
2 for ρ ∈ P do
3 π ← φ(X) ∧ ψρ(X,A) ∧ Tρ(A)
4 if IsSat(π) then
5 if hitbug then
6 P ′ ← P ′ \ ρ
7 T ′ρ ← RefinePatch(φ, ρ, Tρ, σ)
8 if T ′ρ False then
9 P ′ ← P ′ ∪ {ρ with T ′ρ}

10 end
11 end
12 UpdateRanking(ρ)
13 end
14 end
15 return P ′

path constraint, the PickNewInput function (see line 3 in Algorithm 1) applies
generational search [43] to obtain new inputs: by negating every suffix term in the
constraint, we can retrieve the maximum number of new path constraint prefixes.

While checking the satisfiability of the obtained path constraint prefixes, we
also determine whether there exists a patch candidate ρ in our current patch pool,
which allows to exercise this path. In this way, we prune paths, for which no patch is
feasible. We call this pruning of the input space path reduction. After checking the
satisfiability, we can generate a set of new inputs, which are ranked based on how
often they trigger the execution of the patch and bug location. In this way, a set
of new inputs is maintained, which can be worked on and extended in every repair
iteration. The complete path constraint is then retrieved by concolically executing
the new input, and injecting the patch formula ψρ (for a patch expression ρ) into
the path constraint.

5.3.2.3 Patch Reduction

The Reduce function in Algorithm 1 (see line 9) tries to shrink the patch pool and
to possibly refine the available abstract patches. Its workflow is shown in Algorithm
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2.
Criterion for Patch Reduction: For every patch ρ in the patch pool P we

need to make sure that there is no violation of the specification σ for all inputs
that are specified by the given path constraint. Otherwise, the patch needs to
be removed. More specifically, we need to make sure that there exist parameter
values parameters ai ∈ A within in the constraint Tρ(A) so that for all inputs
xi ∈ X, which satisfy the path constraint φ(X) and the patch formula ψρ(X,A),
there is no violation of the specification σ(X). Given A = {a1, a2, .., an} and X =
{x1, x2, .., xm}, this means:

∃a1, a2, .., an∀x1, x2, .., xm :

φ(X) ∧ ψρ(X,A) ∧ Tρ(A) =⇒ σ(X) (5.1)

In our approach we do not only ensure that there exists one value for each param-
eters ai, but we iteratively refine the constraint Tρ(A) to reduce the patch space as
much as possible and to ensure that the specification holds for all (refined) values
for each parameter ai:

∀a1, a2, .., an∀x1, x2, .., xm :

φ(X) ∧ ψρ(X,A) ∧ Tρ(A) =⇒ σ(X) (5.2)

We want this formula (2) to hold after refinement, and hence it is used to guide
our abstract patch refinement.

Reduction Algorithm: Algorithm 2 describes the reduction function for ab-
stract patches. The function iterates over every patch and searches for specification
violations. Before calling the patch refinement in line 7, there are two additional
pre-checks, to make sure that we can reason about the patch within the current
path constraint. First we check whether the path constraint φ and the current
patch ρ (see line 3 and 4) are feasible. Secondly, we check whether the bug loca-
tion is exercised by the current execution (see line 5) so that the buggy behavior is
observable.

If both checks are passed, then we investigate whether the patch ρ with con-
straint Tρ needs to be refined by searching for counterexamples for formula (2). The
only option for the patch refinement, based on our definition of abstract patches
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(see Section 5.3.1), is to refine the constraint Tρ. The implementation details for
the patch refinement are presented in Section 5.4.3. If no refinement is feasible,
then the patch will be eventually removed.

Patch Ranking: In addition to reducing the patch space, our approach at-
tempts to rank the remaining patches. The rank of each patch ρ will be increased
as long as the patch is feasible with the path constraint φ (see line 12 in Algorithm
2). Otherwise the ranking will be not modified because we cannot reason about
the patch with regard to the current path constraint. If the path exercises the bug
location, then the patch will be ranked additionally higher (as compared to the sit-
uation where it does not exercise the bug location). Intuitively, this means that (1)
patches that are compatible with the current path constraint will be ranked higher
because we have seen more evidence for their correctness (in terms of the explored
input space). In addition, (2) patches that also exercise the bug location will be
ranked even higher because they exercised the program location, where potential
errors are observable. Patches that are compatible with the path constraint and
do not exercise the bug location could still be erroneous, but there has been no
possibility to observe the error. We only rank those patches which do not show any
violation of the specification for the explored input space.

In addition, we deprioritize patches that change the program behavior signifi-
cantly, specifically deletion of functionality — which can happen if the guard of a
conditional statement is changed by a patch to tautologies or their negation. Based
on our formula (2) we cannot remove these patches because they do not violate the
specification. However, functionality deletion is in general not desirable; as stated
in a recent study [110], this kind of functionality deleting patches are present in
the earlier works on search-based program repair and are overfitting. Although
we cannot remove these patches, our patch ranking mechanism deprioritizes them.
Therefore, for all patch candidates, we check whether the insertion of the patch
affects the control flow of the inputs flowing through the path (even if the insertion
of the patch does not violate the user-provided specification). We deprioritize such
patches, and increase the rank of the other patches, and this ranking fine-tuning
is accumulated over all the paths explored. Further fine-tuning of this heuristic
is possible via model counting [44, 21] to find the proportion of inputs in a path
affected by a patch insertion.
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5.4 Implementation
In this section we provide necessary implementation details for our tool CPR.This
includes details about the generation of patch formula ψ as indicated in our patch
definition (see Section 5.3.1), details on the ranking heuristics in our path explo-
ration (see Section 5.3.2.2), and the algorithm for the patch refinement needed for
the patch reduction (see Section 5.3.2.3).

5.4.1 Patch Formula Generation

Technically, a patch is represented as an expression tree including the expression
components: the program variables, constants, the patch parameters, and arith-
metic/comparison operators (depending on the used language components). Each
expression tree can be transformed into an SMT formula, by considering the se-
mantics of the operators (or components) appearing in the expression. For concolic
execution, the program is instrumented with a symbol at the patch location, which
represents a second-order variable because it depends on the input variables and the
patch parameters. The information about the symbol and the transformed expres-
sion tree is what we call the patch formula. After concolic execution, we combine
the current path constraint with the patch formula, which essentially replaces the
symbol with the constraint derived from the patch. This results in an SMT formula,
which can be solved with an off-the-shelf SMT solver in order to reason about patch
with regard to the current path constraint.

5.4.2 Path Ranking

As mentioned in Section 5.3.2.2 the inputs (with their corresponding path con-
straints) are ranked based on how often the program exercises the patch and bug
location. Technically, this can be determined by executing the program with the
inputs, followed by the examination of the collected execution traces. However, this
is rather expensive on an instruction level. Instead we examine the already available
path constraint prefixes and count the number of occurrences of the corresponding
symbols. Note that we instrument the patch location with the patch symbol (see
Section 5.4.1), and similarly, we instrument the bug location with a symbol to inject
the given specification as a constraint over the program variables. For paths with
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an equal count, we check in which path constraint the occurrences happen earlier,
to break ties further.

5.4.3 Abstract Patch Refinement

During patch space reduction (see Algorithm 2) we try to refine the available ab-
stract patches whenever we identify a corresponding violation of specification σ.
This is achieved by efficiently refining the parameter constraint Tρ of the abstract
patch ρ as shown in Algorithm 3.

Removal of non-refinable constraints. Before starting the fine-grained re-
finement of Tρ, the Algorithm 3 checks whether there is a refinement of Tρ feasible,
which will make the specification pass. It checks whether (a) the conjunction of the
path constraint with the specification (see formula ωpass1 in line 1) is satisfiable,
followed by the check whether (b) the conjunction of the path constraint with the
current patch constraint still allows to pass the specification (see formula ωpass2 in
line 3). If (a) is satisfiable, but (b) is unsatisfiable, the parameter constraint does
not contain any value that repairs the specification violation, and hence, can be
discarded completely.

Counterexample exploration. After these initial checks, the algorithm searches
counterexamples for the general formula (2) from Section 5.3.2.3 (see formula ωfail
in line 8). They capture violations of the specification, which need to be excluded
by our refinement of Tρ. If there exists no such model for formula ωfail, then the
parameter constraint needs no further refinement and the current constraint can be
returned (see line 31). But if there is a model mA, the Split function removes the
model from the current constraint Tρ and splits it into multiple regions (see line
11).

Region representation. We assume that the parameter constraint can be split
into k regions R = {r1, r2, ..., rk} so that the constraint represents the disjunction of
the separate regions. This limits the search space during refinement and can lead to
removal of regions, which do not satisfy the specification. For example, consider a
parameter space with one parameter a and the constraint Tρ(a) := (l ≤ a)∧(a ≤ u).
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Algorithm 3: RefinePatch function
Input: path constraint φ, abstract patch ρ, parameter constraint Tρ,

specification σ
Output: refined constraint T ′ρ

1 ωpass1 ← φ(X) ∧ σ(X)
2 if IsSat(ωpass1) then
3 ωpass2 ← φ(X) ∧ ψρ(X,A) ∧ Tρ(A) ∧ σ(X)
4 if ¬IsSat(ωpass2) then
5 return False
6 end
7 end
8 ωfail ← φ(X) ∧ ψρ(X,A) ∧ Tρ(A) ∧ ¬σ(X)
9 mA ← GetModel(ωfail)

10 if m exists then
11 R = {r1, r2, .., rk} ← Split(Tρ, mA)
12 if R = ∅ then
13 return False
14 else
15 R′ ← {}
16 for ri ∈ R do
17 π ← φ(X) ∧ ψρ(X,A) ∧ ri(A)
18 if IsSat(π) then
19 r′i ← RefinePatch(φ, ρ, ri, σ)
20 if r′i False then
21 R′ ← R′ ∪ {r′i}
22 end
23 else
24 R′ ← R′ ∪ {ri}
25 end
26 end
27 R′ ← Merge(R′)
28 return ∨

r′
i∈R′

r′i

29 end
30 else
31 return Tρ
32 end

Having the counterexamplema, the Split function replaces the existing region with
two new regions:

r1 := (l ≤ a) ∧ (a ≤ ma − 1)
r2 := (ma + 1 ≤ a) ∧ (a ≤ u)
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Even if Tρ already consists of multiple regions, only one region will be affected by
the removal of the counterexample. In general there will be 3n−1 additional regions
introduced (where n is the number of parameters), while some of them might be
merged later with surrounding regions.

Recursive refinement. The algorithm further checks for specification violations
(see line 16 to 26) by recursively calling the refinement function on the regions (see
line 19). Each recursive call is guarded by a check whether the current region ri

is compatible with the path constraint φ and the current patch formula (see line
17 and 18). Otherwise we cannot reason about the region. After iterating over
all regions, the algorithm attempts to merge contiguous regions (see line 27), and
finally, returns the disjunction of the refined parameter regions (see line 28).

5.5 Evaluation
The goal of our work is to efficiently navigate the patch space and find the correct
patch that works beyond the provided test suite. We compare our technique with
the related counterexample-guided inductive synthesis (CEGIS) [134, 135] because
it also can be employed to navigate the patch space via patch refinement in order
to generate the correct patch. Note that the above proposed technique of concolic
program repair is not tailored to a specific class of errors. However, the low depen-
dence on existing test cases fits well the context of repairing security vulnerabilities.
Therefore, we present an empirical comparison with the state-of-the-art program
repair tools Angelix [92], and Prophet [79], and also the recently proposed tool
ExtractFix [40] for repairing security vulnerabilities. To highlight CPR’s general
repair capabilities, we also include additional subjects from the ManyBugs [46]
benchmark. Furthermore, we show CPR’s ability to fix logical errors for subjects
from the SV-COMP benchmark [152]. All experimental data, as well as the open-
source CPR tool, are available from: https://cpr-tool.github.io/
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5.5.1 Experimental Setup

Benchmark Suite. ExtractFix [40] is a state-of-the-art vulnerability repair
tool, which generates fixes for security vulnerabilities by computing a crash-free
constraint using a sanitizer. The crash-free constraint is used as the oracle for patch
generation, and in our case, it can serve as the program specification. We follow a
different workflow by first synthesizing patches at a given fault location and then
gradually improving them based on a concolic exploration. We use their benchmark,
which includes real-world applications with reported security vulnerabilities, and
hence, it can be used to evaluate the efficacy of our technique in repairing security
vulnerabilities. The collected subjects from the ManyBugs [46] benchmark show a
partial subset of programs that can be handled with our underlying concolic engine
KLEE [16]. Most of these subjects represent general errors. SV-COMP [152] is
a common benchmark for evaluating the effectiveness and efficiency of state-of-
the-art verification techniques. We identified C programs from SV-COMP, which
include reachable assertion errors and for which there is another program in the
benchmark, which represents a repaired version (i.e., the assertion is present but the
error is not reachable), while the repair is not just a modification of the assertion’s
condition, but a logical change in the program before the assertion is reached. For
our experiments, we have chosen 10 programs that satisfy the stated conditions.

Experimental Setup. Our implementation of the concolic engine is an exten-
sion of KLEE [16]. All experiments are conducted on a Dell PowerEdge R530 with
Intel(R) Xeon(R) CPU E5-2660 processor and 64GB RAM. We use Docker contain-
ers to exploit and repair the vulnerable applications. The experiments have been
executed with the timeout of 1 hour to match the experiments of ExtractFix
[40], allowing comparison with other repair tools. The language components for
the synthesis are selected as needed for the specific subject and the parameters for
the abstract patches have been limited to be within the range [-10,10]. For each
experiment, (at least) one failing test case is provided as the initial test case. For
subjects in the ExtractFix benchmark the failing test case is the exploit. For
subjects in the ManyBugs benchmark there are multiple failing and passing test
cases, while we provide CPR only the failing test cases. For subjects in SV-COMP

91



we manually generate a failing test to trigger assertion errors. For ExtractFix
and ManyBugs, we derive simple specifications from the programs themselves,
e.g., that a program should not return an erroneous status code. The specification
for the SV-COMP subjects is directly extracted based on the included assertions.
For our experiments, the fault locations have been provided manually to CPR.

Our CEGIS Implementation. CEGIS comes in various forms in existing works
[134, 135, 4]. We implement our own custom version of CEGIS with regard to the
concepts in [135] by reusing as much components as possible from our tool CPR so
that we can enable a fair comparison between the concepts with minimized impact
of implementation differences. More specifically, our CEGIS implementation reuses
CPR’s concolic engine to provide a common path exploration for both techniques
and reuses CPR’s synthesizer to explore the same patch space. This custom CEGIS
implementation supports the patch generation using a counterexample-guided re-
finement of the synthesis constraint. It starts with a concolic exploration of the
input space to construct a set of path constraints. Afterwards, we synthesize a
patch for the derived constraints (i.e., user-provided specification and witnessed
program paths in previous concolic exploration). We then verify if the synthesized
patch can produce a counterexample such that the specification is violated. If a
counterexample can be found, the current patch will be thrown away, and the coun-
terexample model is added to the synthesis constraint. The synthesizer will generate
a new patch and the iteration continues until there is no further counterexample,
or the patch space is covered.

It is necessary to limit the concolic exploration of CEGIS to make the tech-
niques comparable. In our experiments, we split the overall timeout of 1 hour for
CEGIS into 30 minutes initial path exploration and 30 minutes patch refinement.
The conceptual difference between CEGIS and CPR is that CEGIS explores the
patch space and input space one patch / one input at a time, while CPR explores
partitions in both the patch space and the input space.
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5.5.2 Experimental Results

5.5.2.1 Our CEGIS Implementation

Table 5.1 shows the results of the comparison between the two techniques. Column
Components indicate the number of language components passed to our synthe-
sizer. The sub columns General and Custom represent the number of components
from the general synthesis language and number of custom components created
specifically for the respective test subject. Columns |PInit| and |PFinal| show the
number of patches in the plausible patch space at the start of the refinement and
at the end respectively. CEGIS does not maintain a patch pool like CPR, but only
generates one patch that satisfies the collected constraints. However, the current
patch pool size can be calculated by instructing the synthesizer to produce all cur-
rently feasible patches. |PInit| is for CEGIS the same as for CPR because we share
the same inputs and synthesizer. Column Ratio shows the percentage of the patch
space reduction. Column φE indicates the number of program paths explored for
the refinement. Column φS indicates the number of program paths skipped dur-
ing the refinement due to patch in-feasibility. Column Correct? indicates whether
CEGIS finishes with a patch that is syntactically or semantically equivalent with the
developer patch and column Rank shows the corresponding highest rank position.

The N/A values for ID 23 and 24 in Table 5.1 indicate that both CEGIS and
CPR have not been able to produce any results because the execution of the test
driver code resulted in an unexpected memory fault for our underlying concolic
execution engine. The "-" signs for CEGIS for ID 30 mean that it was not able to
generate any patch within the timeout.

Input and patch space exploration. The comparison of the Ratio columns
in Table 5.1 shows that in 14 of 30 cases CPR can produce significantly better
patch space reduction than CEGIS. In the remaining 16 cases, both perform simi-
larly. For a few subjects, CPR resulted in 0% reduction, partly because of the loop
unrolling (and hence longer paths) in symbolic execution. While this is an area
we can work on, the φS column shows that CPR is already effective in combating
path explosion by skipping additional paths over and above normal concolic exe-
cution. For all subjects, for which CPR produces some patch space reduction >
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Table 5.1: Comparison of CEGIS vs CPR

ID Buggy Program Components Our CEGIS Implementation CPR
Project Bug ID General Custom |PInit| |PFinal| Ratio φE Correct? |PInit| |PFinal| Ratio φE φS Rank

1 Libtiff CVE-2016-5321 2 3 174 174 0 % 17 7 174 104 40% 67 77 2
2 Libtiff CVE-2014-8128 4 3 260 260 0% 0 7 260 260 0% 0 0 1
3 Libtiff CVE-2016-3186 4 3 130 130 0% 13 7 130 130 0% 13 1 11
4 Libtiff CVE-2016-5314 4 4 199 198 1% 10 7 199 197 1% 21 4 2
5 Libtiff CVE-2016-9273 4 3 260 260 0% 5 7 260 141 46% 10 2 8
6 Libtiff bugzilla 2633 4 3 130 130 0% 66 7 130 130 0% 109 21 8
7 Libtiff CVE-2016-10094 4 3 130 130 0% 23 7 130 77 41% 34 114 6
8 Libtiff CVE-2017-7601 4 2 94 94 0% 27 7 94 94 0% 78 107 2
9 Libtiff CVE-2016-3623 4 3 130 130 0% 60 7 130 100 23% 102 21 1
10 Libtiff CVE-2017-7595 4 3 130 130 0% 10 7 130 130 0% 18 31 1
11 Libtiff bugzilla 2611 4 3 130 130 0% 61 7 130 112 14% 87 15 1
12 Binutils CVE-2018-10372 5 3 74 74 0% 9 7 74 39 47% 25 1 33
13 Binutils CVE-2017-15025 4 3 130 130 0% 0 7 130 130 0% 0 0 6
14 Libxml2 CVE-2016-1834 4 3 260 260 0% 6 7 260 260 0% 22 0 12
15 Libxml2 CVE-2016-1838 4 4 199 199 0% 4 7 199 199 0% 4 0 10
16 Libxml2 CVE-2016-1839 5 3 65 65 0% 0 7 65 65 0% 0 0 14
17 Libxml2 CVE-2012-5134 4 3 260 260 0% 44 7 260 134 48% 80 271 7
18 Libxml2 CVE-2017-5969 4 3 260 260 0% 0 7 260 154 41% 21 2 1
19 Libjpeg CVE-2018-14498 4 3 260 260 0% 42 7 260 128 51% 78 108 2
20 Libjpeg CVE-2018-19664 4 3 130 130 0% 43 7 130 130 0% 84 26 1
21 Libjpeg CVE-2017-15232 5 3 955 955 0% 0 7 955 955 0% 0 0 26
22 Libjpeg CVE-2012-2806 4 3 260 259 0% 68 7 260 145 44% 110 3 3
23 FFmpeg CVE-2017-9992 6 3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
24 FFmpeg Bugzilla-1404 4 2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
25 Jasper CVE-2016-8691 4 3 260 260 0% 72 7 260 96 63% 69 7 1
26 Jasper CVE-2016-9387 5 3 65 65 0% 54 7 65 17 74% 111 1 7

27 Coreutils Bugzilla 26545 5 3 1025 1025 0% 74 7 1025 949 7% 119 2 25
28 Coreutils GNUBug 25003 4 4 199 198 1% 114 7 199 172 14% 196 0 6
29 Coreutils GNUBug 25023 4 2 64 64 0% 32 7 64 64 0% 1 2 7
30 Coreutils Bugzilla 19784 4 3 - - - - - 770 770 0% 6 0 38

Comparison between our CEGIS implementation and CPR with regard to patch pool reduction ratio
and input space reduction ratio. Benchmark: ExtractFix. The experiments have been executed with a
timeout of 1 hour.

1%, it outperforms CEGIS. Furthermore, the φE columns show that CPR is also
more efficient in exploring the input space: in 20 of 30 cases CPR explores more
path constraints than CEGIS, in 2 cases CEGIS shows better results, and for the
remaining 8 cases both perform similarly. Additionally, CPR can effectively skip
infeasible path constraints (see Column φS).

Furthermore, CEGIS requires initial path exploration to construct the constraint
for later patch verification. Therefore, in order to verify a patch, CEGIS uses a set
of symbolic paths that capture a portion of the program specification. In contrast,
our technique CPR is an anytime algorithm that uses a single program path at a
time for patch refinement. Processing a single path at a time, compared to a set of
paths is more efficient during constraint solving.

Identifying the correct patch. In none of our 30 test subjects CEGIS can
identify a patch, which is syntactically or semantically equivalent with the developer
patch (see Column Correct?). The reason is that as soon as CEGIS identifies a
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Table 5.2: Comparison of CPR with repair tools

Benchmark Program #Vul Generated Patches Correct Patches
Prophet Angelix ExtractFix Prophet Angelix ExtractFix

ExtractFix

Libtiff 11 7 7 9 1 0 6
Binutils 2 - - 2 - - 1
Libxml2 5 3 0 4 0 0 2
Libjpeg 4 3 - 3 1 - 2
FFmpeg 2 - - 2 - - 2
Jasper 2 2 2 2 0 0 1
Coreutils 4 2 - 2 0 - 2

Total 30 17 9 24 2 0 16
The experiments have been executed with a timeout of 1 hour [40]. For Prophet and Angelix the results
show only the top-ranked patch, while for ExtractFix the results capture the only patch generated.

patch, which does not violate the specification for the previously collected path
constraints, it terminates and returns this current patch. In our experiments, such
a patch often is a tautology or contradiction, which can be semantically equivalent
to code deletion, as the patch would enforce early termination of the program to
avoid the bug location. CPR includes such patches in the patch space (as long as
they do not violate any specification), but our ranking system de-prioritizes such
patches (see Section 5.3.2.3). Column Rank shows that CPR ranks the developer
patch (or a semantic equivalent) relatively high, in 20 cases in the Top-10.

5.5.2.2 Existing Program Repair Tools

CPR can be leveraged for constraint-driven repair, i.e., having just a few or no test
cases, but a constraint, which can be used as a repair oracle. For this purpose, we
focus on the comparison with the most recently proposed constraint-driven repair
technique ExtractFix [40] and their corresponding data-set. On the data-set of
ExtractFix, CPR generates the correct patch in top position for 7/30 subjects
and in second position in 4/30 subjects, as shown in Table 5.1.

As already mentioned, ExtractFix uses a crash-free constraint as the guiding
oracle to generate a patch. ExtractFix computes the weakest precondition for the
patch by back propagating the crash-free constraint. Conceptually, ExtractFix
explores the patch space using the crash-free constraint to determine the patch and
then evaluates the effectiveness of the patch for the input space. In contrast, CPR
can use the same crash-free constraint but explores the input space to determine the
invalid values that can violate the crash-free constraint, and use this information
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to evaluate the effectiveness of the patch. The tool ExtractFix is also compared
with conventional test-based repair tools Prophet and Angelix in [40].

Table 5.2 from [40] shows the results on the same security vulnerability bench-
mark. Column #V ul shows the count of vulnerabilities for each subject, which is
in total 30. The columns Generated Patches and Correct Patches show the number
of vulnerabilities, for which the techniques generated plausible and correct patches
(i.e., syntactically or semantically equivalent to the developer patch).

Table 5.3: Performance of CPR on ManyBugs benchmark

ID Buggy Program Components CPR
Project Subject ID General Custom |PInit| |PFinal| Ratio φE φS Rank

1 Libtiff ee65c74 4 3 6 6 0% 29 90 1
2 Libtiff 865f7b2 4 3 130 130 0% 24 68 5
3 Libtiff 7d6e298 5 4 4 2 50% 7 7 1
4 gzip 884ef6d16c 5 4 4821 4821 0% 11 0 36
5 gzip f17cbd13a1 5 4 2 2 0% 0 1 1

Performance of CPR with regard to patch pool reduction ratio and input space reduction ratio for
additional subjects from the ManyBugs benchmark. The experiments have been executed with a timeout
of 1 hour.

Overall, we note that ExtractFix is a customized tool for repairing security
vulnerabilities which hooks into specific sanitizers, whereas ours is a general-purpose
program repair machinery. Table 5.3 shows the results from test-based repair of
Manybugs subjects [46] that require a general-purpose repair technique; these can-
not be handled by ExtractFix. CPR can generate correct patches for all of them,
by leveraging the failing tests to drive concolic path exploration. In future, it is
also possible to experimentally evaluate the usage of passing tests to drive concolic
exploration in CPR.

Since Prophet and Angelix are test-driven general repair techniques, in ad-
dition to the failing test case, available developer test-suite are provided to both
Angelix and Prophet (the programs in Table 5.2 come with test-suites from
developers). ExtractFix and CPR do not need additional tests.

Angelix and Prophet In contrast to our approach, ExtractFix is driven
only by the initial test case while Angelix and Prophet both use additional
developer test cases. Despite being provided additional test cases, both Angelix
and Prophet cannot produce many correct patches. Prophet can only identify
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correct patches for 2 of the vulnerabilities and Angelix is not able to correctly fix
any of them, as the top-ranked patch. Most of the correct patches represent updated
or inserted conditions, which are in the search space of both techniques. However,
as mentioned in ExtractFix [40], the developer-provided tests for this benchmark
are very limited, which may lead to overfitting patches. Therefore, Angelix cannot
generate a rich specification for synthesis, and Prophet suffers from a large search
space. Prophet and Angelix have the potential to repair more vulnerabilities if
more tests are available, and if more of their ranking is examined, i.e., beyond the
top-ranked patch.

5.5.2.3 Fixing Logical Errors

We further evaluate CPR on its capability to repair logical errors of a program
provided as assertions or rich-text comments on the source code.

Therefore, we investigate the possibility of repairing programs beyond simple
oracles such as crash-freedom. We evaluate the efficacy of CPR in fixing logical
errors on subjects from the SV-COMP benchmark, which is popular for automated
program verification and provides such program specifications. As mentioned ear-
lier, for our chosen SV-COMP programs the developer provided patch is available in
the form of another program (so we can check whether CPR produced the correct
patch), and the developer provided patch is not merely a change of the assertion
but involves a change in the functionality.

Table 5.4: Performance of CPR for logical errors in SV-COMP

ID Subject Components CPR
General Custom |PInit| |PFinal| Ratio φE φS Rank

1 loops/insertion_sort 4 3 260 132 49% 120 0 1
2 loops/linear_search 4 3 260 127 51% 109 17 1
3 loops/string 2 3 676 676 0% 37 0 2
4 loops/eureka 5 3 29 29 0% 107 27 3
5 loops-crafted-1/nested_delay 4 3 260 117 55% 9 8 4
6 loops/sum 4 3 260 236 9% 116 0 1
7 array-examples/bubble_sort 4 3 260 144 45% 34 19 2
8 array-examples/unique_list 1 2 5 4 20% 134 11 1
9 array-examples/standard_run 4 3 260 126 52% 68 41 1
10 recursive/addition 5 3 38 14 63% 138 1 4

Performance of CPR with regard to patch pool reduction ratio and input space reduction ratio for the
repair of logical errors in SV-COMP. The experiments have been executed with a timeout of 1 hour.

Table 5.4 presents the results. The meaning of the columns is similar to Table
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5.1 in Section 5.5.2.1. For all subjects, CPR can identify correct patches in the
patch pool. Furthermore, due to the efficient space exploration, CPR achieves a
patch space reduction ratio of up to 63 %. Only for one subject (loops/eureka)
CPR was not able to produce any patch space reduction. The reason is that the
assertion in the program was not strong enough to identify violations. However,
CPR still has been able to rank the correct patch on position 3. In fact, for all
of the 10 subjects CPR can rank the correct patches in the Top-10 and for five of
them as Top-1.

5.5.2.4 Internal Evaluation of CPR Components

Parameter Range As mentioned in our Experimental Setup section, the param-
eters for the abstract patches in our experiments are limited within the range [-10,
10]. We conducted additional experiments to show the effects of other ranges.

Table 5.5: Impact of different parameter ranges on the repair success of CPR

Buggy Program Parameter CPR
Project Bug ID Range #Iter. φE |PInit| |PFinal| Ratio Rank

Jasper CVE-2016-8691
[-1, 1] 70 68 44 15 66% 1
[-10, 10] 70 69 260 96 63% 1

[-100, 100] 70 79 2420 907 63% 1

Libtiff CVE-2016-10094
[-1, 1] 35 34 22 10 55% -
[-10, 10] 35 34 130 77 41% 6

[-100, 100] 27 26 1210 887 27% 6
Benchmark: selection of ExtractFix. The experiments have been executed with a timeout of 1 hour.

The results in Table 5.5 show that the number of initial patch candidates (|PInit|)
is growing with a larger parameter range. The effort for the initial patch pool con-
struction is not largely affected because the concrete values for the parameters are
not enumerated but abstracted in the range. The ranking of the correct patch itself
is not necessarily affected as our experiments show. For Jasper/CVE-2016-8691
the correct patch is correctly identified after the first iteration. For Libtiff/CVE-
2016-10094 the parameter range needs to include the constant 4 so that CPR
can identify the correct patch. With a too narrow range like [−1, 1] CPR cannot
identify the correct patch.
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Table 5.6: Path exploration of CPR

Benchmark Avg. PatchLoc Hit Avg. BugLoc Hit
ExtractFix 74.36% 40.23%
ManyBugs 57.14% 65.15%
SV-COMP 76.33% 79.08%

Average ratio of the number of generated inputs that hit the patch and bug location.

Input Generation The additional generation of inputs is an essential part of
our path exploration phase (see Section 5.3.2.2). Our search heuristics drive the
input generation to the bug location. Hitting the bug location is crucial, not only
to rule out patches, but also to improve the patch ranking. Table 5.6 shows how
often our generated inputs hit the patch and bug location on average. The results
show that to a large extent our generated inputs do exercise the patch and bug
location. However, for the ExtractFix benchmark hit count for the bug location
is comparably low with 40.23%. In contrast to the SV-COMP subjects, where the
inputs represent primitive data types, the ExtractFix subjects require complex
input structures like images or XML files. Our input generation does not use an
application-specific input grammar, which could lead to a significant improvement.

Patch Ranking The changes in our ranking are based on whether the generated
inputs exercise the patch and bug location under the specific patches. For many
subjects the ranking of the correct patch is already very high after the first few
iterations, and is not changed later. Our path exploration starts with inputs that
exercise paths that are close to the path of the failing test case: hitting the bug
location is more likely for those inputs. In some subjects, the ranking improved
gradually over the repair time, e.g. Coreutils/Bugzilla 26545 starts with the correct
patch ranked at position 104 and it improves to 25 (after 65th iteration). Change
in ranking can happen due to patch candidates violating specification in the new
paths.

5.5.3 Threats to Validity

In the formulation of our repair algorithm, as well as in our experiments, we assume
that the correct patch is included in the initial patch pool P . This is only the case,
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if our synthesis language/grammar covers this patch. In general, this assumption
might not hold. In such a case, our ranking allows us to still present the most
promising patches, which can only repair the program for a portion of the input
space. Our approach currently focuses on repairing boolean and integer expressions.
In future we want to extend our work to repair complete assignments as well as side-
effect free function calls.

Our approach requires some ingredients that differs from existing program repair
strategies: the user-provided (partial) specification and the fault locations (see the
input description in Section 5.3.2). The specification allows us to reason about many
program inputs going beyond a test suite. Other techniques rely on bug templates,
sanitizers, existing test cases, or probabilistic models to reason about the correct
behavior. Our specifications are lightweight, and our experiments show that even
simple specifications can be used to rule out overfitting patches in an incremental
manner. The fault location information is an input to our approach, which can
be derived from statistical fault localization. Test-based repair tools may use a set
of fault locations, while our approach currently works with one fault location at a
time.

5.6 Summary
In this chapter, we take a look at the problem of repairing security vulnerabilities
using a user-provided specification. We note that the patches produced by cur-
rent program repair techniques may not even ensure very basic notions of correct-
ness such as crash-freedom, or assertions, even when such simple specifications are
readily available. Our concolic exploration incorporates a user-provided program-
specification to identify overfitting patches that are plausible but do not satisfy the
specification for at least one of the generated inputs. Furthermore, by removing
incorrect but plausible patches we shrink the patch space and increase the ranking
of the correct patch, alleviating patch overfitting which is a necessity to find the
correct repair for security vulnerabilities.
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CHAPTER 6. VULNERABILITY REPAIR VIA PATCH BACKPORTING

Chapter 6

Vulnerability Repair via
Patch Backporting
Fixing security vulnerabilities does not always entail a passing test-case that was
previously failing. In practice, some of the security vulnerabilities reported may
not contain a proof of concept i.e. an exploit to reproduce the bug. In this chapter
we look into the evolution history of a software, to generate plausible patches to
existing un-patched security vulnerabilities. More specifically we study the problem
of automated patch backporting to repair security vulnerabilities in old versions of
the same software. We select the Linux kernel project as a case-study for this prob-
lem, where the impact of an automated backporting technique is high, especially if
there is a security vulnerability that is exposed for exploitation. Whenever a bug
or vulnerability is detected in the Linux kernel, the kernel developers will endeav-
our to fix it by introducing a patch into the mainline version of the Linux kernel
source tree. However, many users run older “stable” versions of Linux, meaning
that the patch should also be “backported” to one or more of these older kernel
versions. This process is error-prone and there is usually a long delay in publish-
ing the backported patch. In this chapter, we investigate how adapting program
synthesis technique for program transformations can meet the needs of backporting
patches in Linux kernel from the mainline to old stable versions. The chapter starts
with an overview of the backporting problem, followed by an empirical study on
the backporting effort for Linux kernel. It continues with an illustrative example to
demonstrate the challenges of backporting a patch, and continues with the technical
details of our proposed approach. Afterwards, the chapter concludes with a prelim-
inary evaluation, showing the effectiveness of our proposed approach in successfully
backporting patches from the mainline version of Linux into an older stable version.
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6.1 Overview
Although the mainline version of the Linux kernel shares a common codebase with
older versions, they typically diverge over time as different features and fixes are
added to the latest branch. As a result, when a bug is patched in the mainline
version, the patch is often not directly applicable to another version. Given a patch
created for the latest version, backporting involves identifying the correct patch
location and adapting the patch to an older version. Backporting is typically done
manually by a developer, on a case-by-case basis. The manual process of backport-
ing is error-prone and there is usually a long delay in publishing the backported
patch. This becomes critical when we consider security patches.

To understand the importance and challenges of backporting patches, we first
conduct an empirical study on the Linux kernel versions spanning 2011-19. We
found that (1) 51,663 patches have been backported from the mainline to old ver-
sions, representing around 8% of all the commits to the mainline version, and (2)
the backporting process typically took more than one month. Moreover, back-
porting patches is not simple copy and paste, as it may involve changing patch
locations, changing the namespace (the variable or function names used in different
versions), and modifying the code logic and structure. These findings indicate that
automatically backporting patches is important but challenging.

Existing program transformation techniques can potentially be applied to auto-
mate the backporting process. Automated program transformation [93, 77, 54, 113,
6, 10, 120] infers transformation rules from human-written patches, and then applies
the inferred rules to an unforeseen codebase. These approaches have been used to
fix software bugs (e.g. GetaFix [6] and Phoenix [10]), automate repetitive edits
(e.g. Refazer [113] and Lase [93]), etc. However, they have two main limitations:
1) they learn transformation rules from multiple human-written patches, which are
not always available in reality; 2) the program transformation techniques for fixing
software bugs, such as GetaFix [6], Phoenix [10] and Genesis [77], infer trans-
formations from the patches of different applications, so they can only learn general
transformation patterns shared by multiple applications, e.g., inserting null checks,
fixing API usage errors. These limitations prevent the above techniques from ef-
fectively backporting Linux kernel patches. In a backporting setting, 1) there is
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usually only one available patch (the one introduced in the mainline version) and
2) most kernel patches are specific to the kernel and the fix pattern cannot be
learned from other projects. Although GenPat [54] and Sydit [94] require only
one example, GenPat requires a large codebase to provide statistical information
on how to generalize the example, and Sydit simply generalizes all identifiers and
edit positions which may lead to false positives.

The main challenge of synthesizing transformation rules from human patches lies
in inferring a proper generalization. An under-generalized transformation rule can
lead to false negatives: it cannot generate patches for some locations that should be
patched. An over-generalized transformation rule produces false positives: it may
generate patches for some locations that should not be patched. The generalization
problem becomes more serious when only one human patch is available. Consider
the following example patch that fixes an off-by-one error by changing < to <=:

if (chunk_end + ∗ ch < skb) 7→
if (chunk_end + ∗ch <= skb)

In general, it is hard to infer whether to 1) generalize the variable, e.g. ch, 2)
generalize the dereference operation ∗ch, or 3) generalize the whole left operand of
the comparison.

Different from existing program transformation systems [6, 10, 77] that trans-
form patches across different projects, our goal is to transform patches between
different versions of the same project. Different versions of the same project share
similar expressions, algorithms, namespaces, etc. Our main insight is that the sim-
ilarities between versions can guide us in synthesizing properly generalized trans-
formation rules. Suppose vmainline is the original mainline version targeted by de-
veloper patch and vold is the old version to which the patch should be backported.
For the above example, we might observe that vmainline and vold use many variables
(e.g. chunk_end and skb), expressions and algorithms identically. In the function
affected by the patch, we also might observe the following: matched statements:

vmainline : skb_pull(skb, ∗ch)

vold : skb_pull(skb, sctp_chunkhdr_t)

These matching statements suggest that ∗ch should correspond to sctp_chunkhdr_t
in the old version. To backport this patch from the mainline to the old version, when
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synthesizing the transformation rule, this observation can guide us to generalize ∗ch
while keeping the other elements concrete.

In this chapter, we adopt the program synthesis technique for program trans-
formations and investigate how it can be adapted to meet the needs of backporting
patches from the mainline to old stable versions. Specifically, we synthesize a trans-
formation rule from the vmainline patch and apply the transformation rule to multiple
old versions (v1, v2, ...vn). First, based on the single vmainline patch, we represent it
as a transformation rule R using a Domain Specific Language. Since transforma-
tion rule R is specific to the given patch, we propose a notion of partial program
transformation rule Rp, which allows certain fragments of Rp to be generalized ac-
cording to the context in which Rp is applied. For the above example, the partial
transformation rule could be:

if(chunk_end∼true + ∗ch∼true < skb∼true) 7→
if(chunk_end + ∗ch <= skb)

where identifiers (e.g. chunk_end) and an expression ∗ch are marked as flexible
(e∼true means e is flexible). Second, we determine how to generalize these flexible
elements according to the alignment of vmainline and vi, for each targeted older
version vi. This alignment models the matched code elements in vmainline and vi

with respect to the file, function, expression, namespace, etc. The main insight is
that similarities and differences of vmainline and vi modeled by the alignment can
guide us to decide which elements should be generalized. This enables us to find an
appropriate generalization according to the target version in an on-demand manner.

6.2 Empirical Study
We conduct an empirical study of changes in the Linux kernel to better understand
the extent and characteristics of patch backporting. Specifically, our study answers
the following research questions:

RQ1: How many patches are backported per release? What percentage of patches
are backported?

RQ2: How long does it take to backport patches?
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RQ3: How do developers backport patches? Can the patches be applied directly,
or do developers need to modify the patches, and if so how do they modify the
patches?

In our study, we investigated 46 versions (v3.1 to v5.5) of the Linux kernel covering
nine years (2011-2019). In total, we collected 633,860 commits submitted to the
mainline version of the kernel and 144,437 commits that backport a mainline patch
to an older stable version. We focus on changes made to source code files and
exclude commits that change other types of files (e.g., configuration files).

6.2.1 Percentage of Backported Patches

We analyze the percentage of backported patches (commits) out of all released
patches. For each release version vrelease, we compute the number of patches in-
troduced in vrelease and cross-reference with patches that were backported to older
versions. Figure 6.1 shows the distribution of the percentage of patches that were
backported for each vrelease. The distribution ranges from 3.87% - 16.29%, and
on average, 8% of patches for a release have been backported to at least one older
version. In total, among 633,860 mainline patches in released versions, 51,663 have
been backported to older versions. A patch is only backported if it fixes an im-
portant bug or is required to enable fixing an important bug [47].1 As users rely
heavily on the old stable versions (much more than the mainline), backporting all
those patches is critical.
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Figure 6.1: The distribution of backported patches per release

1S small percentage of patches add new device properties. These are considered to introduce
very low risk, due to the simplicity of the change, and high value.
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Figure 6.2: Cumulative distribution of patch backporting time

51,663 patches, accounting for 8% of all patches (commits), were backported
to older versions during 2011-2019.

6.2.2 How long does it take to backport a patch?

We investigate the delay between the time when a patch is committed to the main-
line and when it appears in all relevant stable versions. We measure this delay by
computing the difference between the commit date of the patch in the mainline
and the commit date of the last backported patch. For example, the patch with
commit ID db4175ae2 was committed on 15 Jul 2014, and it was backported to five
stable versions (v3.2, v3.10, v3.12, v3.14 and v3.15). The last backported patch
(commit ID 5248ee65) was committed to v3.2.63 on 13 Sep 2014. Hence, the time
to backport this patch is 15 Jul 2014 – 13 Sep 2014, which is 60 days.

Figure 6.2 shows a cumulative distribution function (CDF) for the time of back-
porting patches in days. For simplicity, we only show the data for a duration of up
to a year. 80% of patches took more than 20 days, while around 50% took more
than 46 days. We also found that around 10% of backported patches took more
than 365 days, amounting to 4844 commits. As some bugs may be security critical,
the longer time it takes to backport patches, the higher possibility that such bugs
can be exploited by malicious attackers. These results indicate the necessity to
accelerate the patch backporting process and motivate us to design approaches to
automate it.

2The details of each commit can be found in https://kernel.googlesource.com/
pub/scm/linux/kernel/git/stable/linux-stable /+/COMMIT_ID^!
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Around 50% of backported patches took more than 46 days to be backported
from the mainline to old stable versions.

6.2.3 How does a developer backport patches?

To investigate the patch backporting effort required for a developer, we manually
inspect the backported patches. We choose to study only the patches backported
from a specific version (i.e., v3.8). We label commits based on the difficulty of
backporting:

• Type-I (no changes): the backported commit does not require any change from
the original patch;

• Type-II (only patch location changes): the patch location(s) (e.g. the containing
filename(s) and function name(s), line number(s)) are different in the mainline
and the old versions;

• Type-III (only namespace changes): the original patch is adapted by modifying
variable names, function names, etc.;

• Type-IV (patch location & namespace changes): the original patch is adapted by
changing both the patch location and namespace;

• Type-V (logical or structural change): other changes are needed, such as adding
extra code or removing irrelevant code.

Table 6.1: Developer effort in backporting patches for the Linux kernel project

Label Description Count Percentage
Type-I no changes 149 22.9%
Type-II only patch location changes 431 66.3%
Type-III only namespace changes 0 0%
Type-IV location & namespace changes 20 3.1%
Type-V logical and structural changes 50 7.7%

Table 6.1 shows the results of our manual analysis. In our analysis, most of
the backported patches are Type II, which require changes to the patch locations.
More than 10% of them are Type-IV or Type-V, which represent the more chal-
lenging cases. If a patch has been backported to multiple versions, we notice that
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int unix_read (struct
unix_state *state) { ......

+ scm_destroy(...);
}

int unix_revmsg (struct

unix_state *state) { ......
+ scm_destory(...);
}

(a) Patch location changes when backporting from v4.5 to v3.2

- create_seq ("typeinfo",

0444 , NULL,

&pageinfo_op );

+ create_seq("typeinfo",
0400, NULL,
&pageinfo_op);

- create ("typeinfo",

S_IRUGO , NULL,

&pageinfo_fops );

+ create("typeinfo",
0400, NULL,
&pageinfo_op);

(b) Namespace changes when backporting from v5.5 to v3.16

if (dev->vendor==ID_INT) {
...

+ xhci->quirks |= XHCI_AVOID_BEI;
}

+ if (dev->vendor==ID_INT) {

+ xhci->quirks |= XHCI_AVOID_BEI;
+ }

(c) Structure changes when backporting from v4.0 to v3.2

Figure 6.3: Different types of changes in backporting a patch

the patches backported to the oldest version are more likely to be Type-IV or V,
indicating the challenges of backporting patches to very old versions. According to
our manual inspection, the patch location and namespace changes (Type-II, III, IV)
are easier to automate, while automating the Type-V changes is more challenging.

Figure 6.3 shows three simplified backported patch snippets. Figure 6.3a shows a
backported patch that changes the patch location. This patch was first introduced
in the function unix_read in v4.5 to fix a memory leak bug, and it was then
backported to v3.2, but to a different function unix_revmsg. To backport this
patch, the developer must manually find the correct function in the target version.

Figure 6.3b shows a backported patch that requires namespace changes. This
patch was introduced in v5.5 to fix a vulnerability, and backported to v3.16, by
changing the API call from create_seq to create, and the arguments from 0444

and pageinfo_op to S_IRUGO and pageinfo_fops. Finally, Figure 6.3c shows a
patch that requires structural changes. This patch added a quirk XHCI_AVOID_BEI

to v4.0 under if-condition if (dev->vendor == ID_INTEL). This if-condition does
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not exist in Linux v3.2. So, to backport this patch, the developer needs to backport
this if-condition as well.

When backporting patches, a developer needs to find correct patch locations,
change the namespace, and modify the program logic and composition of the
patch.

6.3 Example
Figure 6.4 depicts a simplified bug-fixing patch and its corresponding backported
patches. This patch was first introduced in v5.1 (Figure 6.4a) and fixed a fault
in the kernel paging request handler. The patch changes an immediate return
to a goto to take advantage of the shared error handling code at the end of the
function. It also stores the original return value in a variable used by this shared
code. This patch was backported to eight stable versions (v3.16, v3.18, v4.4, v4.9,
v4.14, v4.19, v4.20, and v5.0). The backported patches for v4.9 and v3.16 are
shown in Figures 6.4b and 6.4c, respectively. We make two observations, 1) the
if-condition (highlighted in Figures 6.4b and 6.4c) of the backported patches is not
the same as the if-condition of the mainline version v5.1 and 2) there is no returned
value in v3.16

Given the patch p shown in Figure 6.4a, a developer needs to take the following
steps to backport p to older versions. First, the developer needs to analyse p

to understand the surrounding context where p is applied and understand how p

changes the program. Second, since the mainline version vmainline and target version
vi are not the same with respect to the affected code, the developer needs to analyze
their similarities and differences to find the correct location in vi at which to apply
p. At the same time, the developer may need to adjust p according to the context of
vi. Last, the developer produces a patch for the target version. FixMorph tries to
automate this process via transformation rule synthesis. Specifically, FixMorph
takes the whole if-statement as p’s surrounding context and synthesizes a partial
transformation rule Rp. The transformation rule is represented using a domain-
specific language, that will be explained in Section 6.4.2. For simplicity, we show
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if (!gcells->cells || skb_cloned(skb) || netif_elide_gro(dev)){
- return netif_rx(skb);
+ res = netif_rx(skb);
+ goto unlock;
}

(a) The patch introduced in v5.1 (commit 2a5ff07a)

if (!gcells->cells || skb_cloned(skb) || !(dev->features & NETIF_F_GRO) ) {

- return netif_rx(skb);
+ res = netif_rx(skb);
+ goto unlock;
}

(b) Backported patch from v5.1 to v4.9 (commit 7cbb0ab1)

if ( !cell || skb_cloned(skb) || !(dev->features & NETIF_F_GRO) ) {

netif_rx(skb);
- return;
+ goto unlock;
}

(c) Backported patch from v5.1 to v3.16 (commit 415f08eb)

Figure 6.4: Sample backporting task

Rp for this example as follows:

if(t1 || t2 || t3 ) { return m1(a1); } 7→
if(t1 || t2 || t3 ) { v1 =m1(a1); goto l1 ; }

where t1.type=bool ∧ t1.code=“!gcells−>cells”
∧ t2.type=bool ∧ t2.code=“skb_cloned(skb)”
∧ t3.type=bool ∧ t3.code=“netif_elide_gro(dev)”
∧ a1.type=struct∗ ∧ a1.code=“skb” ∧ . . .

The partial transformation rule Rp keeps the keywords (e.g. if) and some operators
that affect high level transformation structures (e.g. ||) fixed and leaves the other
elements in Rp as flexible for follow-up adjustment. In this case, the expressions
t1, t2, t3,m1, v1 and a1 are marked as flexible, meaning that the constraints on them
can be relaxed. In this way, Rp allows certain expressions to be generalized, so
that FixMorph can determine the correct level of generalization according to the
target version by relaxing different expressions.
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How does FixMorph decide which flexible expressions should actually be re-
laxed for a given target version? To backport p from v5.1 to v4.9, the original Rp

cannot be directly applied. The first two boolean expressions (corresponding to t1
and t2 in Rp) are the same in v5.1 and v4.9, but the third expression is different.
Therefore, FixMorph relaxes the constraints on t3 by dropping the constraint on
t3.code, allowing t3 to be a different boolean expression. This leads to the following
rule, which is used for backporting to v4.9.

if(t1 || t2 || t3 ) { return m1(a1); } 7→
if(t1 || t2 || t3 ) { v1 =m1(a1); goto l1 ; }

where t1.type=bool ∧ t1.code=“!gcells−>cells”
∧ t2.type=bool ∧ t2.code=“skb_cloned(skb)”
∧ t3.type=bool

∧ a1.type=struct∗ ∧ a1.code=“skb” ∧ . . .

Backporting to v4.9 required relaxing t3. Backporting p to v3.16 (see Figure 6.4c)
requires relaxing both t1 and t3. Further, backporting the patch to v3.16 requires
a post-processing adjustment for the transformation, which will be explained in
Section 6.4.5. We omit the details of the relaxed rule for v3.16.

In this example, FixMorph needs to generate different levels of generaliza-
tion (by relaxing different flexible expressions) to backport the patch to the dif-
ferent versions. The most generalized transformation rule (generalize all flexi-
ble expressions t1, t2, . . . ) is able to transform all the versions (except for the
post-processing adjustment). However, it will produce many false positives, i.e.,
incorrectly transforming some if-statements that should not be transformed, e.g.
if(a || b || c) return foo(i).

6.4 Methodology

6.4.1 Preliminaries and Problem Statement

Typed Abstract Syntax Trees. An Abstract Syntax Tree (AST) is a tree represen-
tation of the syntactic structure of source code. A typed AST associates each tree
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node with one or more attributes, including type information (e.g., int, bool, etc.),
code, filename, function name, etc. We denote the set of typed ASTs as T.

Transformation Rule A transformation rule R : T → T formulates how to
transform a T to another T. RuleR can be represented as a pair (guard, transformer)
similar to [refazer, 95] defined as follows:

• guard: T → Boolean: guard is a conjunction of predicates over AST nodes.
Basically, a guard tests the type, code and other attributes of an AST node and
returns a Boolean value representing whether the node satisfies its predicate or
not;

• transformer: T → T: transformer takes an input T and constructs another
T. It is built from two underlying operations: (1) select: returns an existing
node from input T satisfying a given guard, and (2) construct: returns a new
node constructed from a specific node kind, attributes, and children.

Essentially, the rule guard determines which AST sub-node should be transformed,
and the transformer determines how the sub-node should be transformed. Thus,
for t ∈ T, we have R(t) = transformer(t) when guard(t) is true, otherwise, R(t)
is ⊥.

Transformation Rule Synthesis Given an input domain I and an output do-
main O, program synthesis takes a set {i0 7→ o0, ..., in 7→ on} of input-output pairs
and synthesizes a program P : I → O such that P (ik) = ok for k ∈ 0...n. For this
chapter, I=O=T, and thus the synthesized program can serve as a transformation
rule that transforms an input T to output T. In general, the aim is to synthe-
size a transformation rule (guard, transformer) that is the generalization of the
concrete transformations, so that guard(ik) = true and transformer(ik) = ok for
all k ∈ 0...n. Many existing synthesis engines, e.g., Refazer, produce the most
specific generalization. That is, given a single input-output pair, those techniques
do not generalize anything.

Patch Backporting Problem A patch p can be thought of as a concrete trans-
formation from one T to another T. Thus, to backport a patch from mainline
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version vmainline to old stable versions {v1, . . . vn}, FixMorph first synthesizes a
transformation rule R : T → T using the vmainline patch p, and then applies R to
{v1, . . . vn} to produce patches. Since R simply expresses the given concrete trans-
formation (vmainline patch p), we find that R is overfitting. That is, R can be applied
to vmainline, but often cannot be directly applied to the older versions {v1, . . . vn}.

Partial Transformation Rule To address the overfitting problem, we intro-
duce a notion of partial transformation rule Rp. The rule Rp annotates certain
predicates as flexible. Intuitively, a partial transformation rule Rp is a flexible gen-
eralization of the given concrete transformation (i.e. the patch). This flexibility
allows Rp to be generalized in an “on-demand” manner according to the context in
which Rp is applied. Hence, FixMorph finds an appropriate level of generalization
for each old version vi, allowing backporting to vi.

6.4.2 A DSL for Backporting Patches

Refazer performs transformation rule synthesis by searching over a Domain-
Specific Language (DSL) for specifying transformation rules. FixMorph extends
this DSL to the language LT shown in Figure 6.5 (differences are highlighted in
grey) to address the needs of patch backporting. The differences are as follows.

First, to allow on-demand generalization, we allow predicates to be marked with
a flexible annotation, denoted by pred ∼ flexible, where flexible is a Boolean
value. If a predicate can be relaxed, its corresponding flexible annotation will be
true, otherwise it will be false. Second, existing synthesis frameworks focus on
the local context (e.g., node kind). However, when backporting patches between
different versions, we find that the global context (e.g., the file name and function
name) can also help guide the backporting process. In general, a patch will most
likely be backported to a file and function with the same name as in vmainline. To
support this feature, we add two predicates InFile and InFunction to our DSL
LT . Finally, since FixMorph is built on top of typed ASTs, we also add a type
checking (HasType) predicate to LT .
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rule := (guard, transformer)

guard := pred ∼ flexible | Conjunction(pred, guard)

pred := IsKind(node, kind)

| Attribute(node, attr) = value

| Not(pred)

| HasType(node, type)

| InFile(node, fileName)

| InFunction(node, functionName)

flexible := true | false

transformer := select | construct

construct := Tree(kind, attrs, childrenlist)

childrenlist := EmptyChildren | select | construct

| Cons(construct, childrenlist)

| Cons(select, childrenlist)

select := Match(guard, node)

node := ...

Figure 6.5: Domain-specific language in FixMorph for transformation rules

6.4.3 Transformation Rule Synthesis

In this section, we describe how to synthesize a partial transformation rule Rp from
a given vmainline patch p. Given patch p, FixMorph first builds two ASTs ti, to ∈ T
representing the code before/after the application of p. Essentially, p is represented
as an AST transformation ti

p7−→ to. A typical patch p will only affect some subsets of
the complete code, e.g., some specific lines, statements, or functions. Rather than
representing p as a global transformation over the entire file (or files), we restrict ti
and to to the local AST nodes changed by p as well as some surrounding context.
Our approach is analogous to the context diff formats supported by the standard
diff and patch tools, where the patch p includes not only the changed lines, but
also some surrounding unchanged lines for context. The context serves as a reference
point and allows for the patch to be applied even if other unrelated parts of the code
have been modified. Since we aim to backport patches to older versions with other
modifications applied, our motivation is similar. For the context, FixMorph takes
the parent and all siblings of any AST node changed by p. For example, the patch
shown in Figure 6.4a changes a branch of an if-statement. FixMorph, therefore,
takes its parent node, i.e., the if-statement, as the surrounding context. Thus, the
patch p is represented as an AST transformation over the if-statement rather than
specific changed nodes. In addition to the AST context, FixMorph also includes
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other forms of context in the guard, such as the file and function name of the patch
location.

Algorithm Given an input-output pair (ti, to) extracted from patch p, FixMorph
first translates p to a transformation rule in the form (Rguard, Rtransformer), which
is specified using the LT DSL in Figure 6.5. In particular, the synthesis engine
first synthesizes the most specific Rguard that satisfies Rguard(ti) = true . This is
essentially a conjunction of all LT predicates satisfied by ti. Similarly, the synthe-
sis engine synthesizes a Rtransformer that implements the transformation ti 7→ to.
However, the produced transformation rule is overfitting to the given input-output
pair (ti, to), and does not generalize to others. Therefore, instead of directly using
Rguard and Rtransformer, FixMorph produces a partial transformation by marking
one or more predicates used by them as being flexible. Specifically, FixMorph
marks the predicates of Rguard as flexible to allow relaxing the requirements in find-
ing locations to apply the patch. FixMorph marks the predicates of guard used
by select operators as flexible to allow relaxing the requirements in selecting nodes
from ti.

Example 6.4.1. Consider the following transformation:

if(chunk_end + ∗ch < skb) {...} 7→
if(chunk_end + ∗ch <= skb) {...}

The right-hand side of the corresponding partial transformation rule is:

Tree(IfStatement, [], [
Tree(BooleanExpression, [], [

select1, Tree(Opcode, ["<="], []), select2]) ])

where select1 is specified by the guard:

HasType(node, Integer) ∼ false ∧
IsKind(node, BinaryOperator) ∼ true ∧
IsKind(node.kids[2], DeReferExpr) ∼ true ∧
IsKind(node.kids[2].kids[1], Identifier) ∼ true ∧
Attribute(node.kids[2].kids[1], Code)="ch" ∼ true ∧ . . .
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and select2 is specified by the guard

HasType(node, Integer) ∼ false ∧
Attribute(node, Code)="skb" ∼ true

Flexible predicates allow select operations to be relaxed. For example, a relaxed
select1 allows for a different "Code" to be used.

By default, FixMorph marks predicates over the "Code" (generally, only leaf
nodes have a Code attribute.), "FunctionName", "FileName", and "Kind" attributes
as flexible, and predicates over "Type" as non-flexible. The intuition is that predi-
cates over node types determine the high-level structure of the transformation, and
are more likely to be preserved over different versions of the same code.

Remark 6.4.1. A predicate that is marked as flexible is not necessarily relaxed by
the synthesis process. Relaxing all flexible predicates will produce an over-generalized
transformation rule, which may produce false positives. For instance, an over-
generalized Rp from Example 6.4.1 may incorrectly transform an unrelated node,
e.g., if(a + b < c){. . . }.

6.4.4 Relaxing a Transformation Rule

Once a partial transformation rule Rp is synthesized for vmainline patch p, Fix-
Morph decides how to relax Rp for each old stable version {v1, . . . vn}. To help
with this process, we introduce the notion of alignment between different versions.

Alignment We define an alignment to be a set of mappings between the code
elements or context of vmainline and each vi. For example, given the following
expressions:

skb_pull(skb, ∗ch) from vmainline

skb_pull(skb, sctp_chunkhdr_t) from vi

an alignment of vmainline and vi would be {skb 7→ skb, ∗ch 7→ sctp_chunkhdr_t, . . . }.
From the alignment FixMorph builds multiple mappings, including:

• File: maps of the files between vmainline and vi;

• Function: maps of functions between matched file pairs;
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• Expression: maps of the matched expressions, e.g.,
∗ch 7→ sctp_chunkhdr_t;

• NameSpace: maps of the matched identifiers.

First, FixMorph aligns the source files from vmainline to vi using a combina-
tion of the Git version control history and clone detection. For each modified file,
FixMorph uses git to determine the name of the corresponding file in the target
version. If git produces no information, FixMorph uses clone detection [55] to find
the file in the target version that is most similar to the modified file in the mainline.
Next, FixMorph aligns each function, expression, and namespace in the affected
files using a combination of GumTree [34] and anti-unification [109]. Given two
ASTs t1 and t2, GumTree can generate an edit script comprised of insert, delete,
move and update operations that can transform t1 into t2. Besides, GumTree also
constructs a set of matched pairs for the unchanged code elements. For our applica-
tion, we re-purpose GumTree to generate mappings between two ASTs rather than
generate an edit script. Specifically, the GumTree update operation can be used to
derive a set of maps between the code elements (e.g. member accesses, variables)
between vmainline and vi.

Using GumTree, the mappings between the same kinds of code elements (e.g.,
identifier to identifier or, assignment to another assignment), can be extracted. We
then use an approach based on anti-unification [109] to generate other kinds of
mappings such as expression to identifier (e.g., ∗ch to sctp_chunkhdr_t). To do
so, we analyze the alignment between the matched non-leaf pairs of vmainline and
vi via anti-unification. Given ASTs ti and to, their anti-unification is given by
(τ, 〈σ1, σ2〉), where τ is an AST with labelled holes {h0, . . . , hn}, and two substitu-
tions σ1, σ2 : {h0, . . . , hn} → nodes such that σ1(τ) = ti ∧ σ2(τ) = to. We then use
the substitutions to generate a mapping σ−1

1 σ2 between the nodes of ti and to. The
mappings produced by GumTree and anti-unification are combined to produce the
complete mapping.

Example 6.4.2. Given the following if-statements:

if(chunk_end + ∗ch < skb) {...}

if(chunk_end + sctp_chunkhdr_r < skb) {...}
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We can apply anti-unification to their ASTs to generate:
(if(chunk_end + h1 < skb), 〈h1 7→ ∗ch, h1 7→ sctp_chunkhdr_r〉). The anti-
unification result is then used to derive the mapping {∗ch 7→ sctp_chunkhdr_r}.

Relaxation Once FixMorph generates a map {nodei
1 7→ nodeo

1, . . . , nodei
m 7→

nodeo
m} between vmainline and vi, FixMorph relaxes Rp as follows. Suppose a

flexible predicate is presented as pred(node, property), meaning a predicate on
the property (e.g. “Type”, “Kind”, “Code”, etc.) of node. FixMorph relaxes
such a predicate if and only if the property of node is different from the property
of its mapped node. FixMorph relaxes pred and all the predicates on node’s
children.

Example 6.4.3. Let us revisit Examples 6.4.1 and 6.4.2. For the predicate observed
in the example, IsKind(node.kids[2], DeReferExpr) in select1, its corresponding
node from vmainline is ∗ch, while the mapped node from v3.5 is sctp_chunkhdr_r .
Since the Kind of ∗ch is different from the Kind of its mapped node, FixMorph
relaxes this flexible predicate. Besides, FixMorph relaxes the predicate on ∗ch’s
child nodes, including:

IsKind(node.kids[2].kids[1], Identifier) and
Attribute(node.kids[2].kids[1], Code)="ch"

With the relaxed select1, the transformation rule can generate the transformation:

if(chunk_end + sctp_chunkhdr_r < skb) {...} 7→

if(chunk_end + sctp_chunkhdr_r <= skb) {...}

6.4.5 Applying the Transformation Rule

Applying the learnt rule to vi itself may not be adequate to successfully transform
the program. Although FixMorph learns the transformation rule, the transformed
AST could still be incomplete. To make it complete, FixMorph may make a set
of post-processing changes, as articulated in the following:
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Add missing dependencies The backported patch pi may depend on some
variables, functions, arguments, etc. that are missing in vi. FixMorph detects such
missing dependencies used by pi and rectifies them by importing such dependencies.
Specifically, FixMorph analyses the AST nodes that are referenced by pi to find
references to missing variables, functions, macros, etc. FixMorph then recursively
adds the missing definitions (such as a function or variable declaration, header, etc)
to vi.

Prune irrelevant transformation Pruning of irrelevant transformations may
be required to apply the transformation rule to version vi. The commit that intro-
duced patch p to vmainline may include some version-specific changes that cannot be
backported to vi. For instance, the commit in vmainline may move a code statement
from one location to another location, whereby the code statement does not exist
in vi. FixMorph detects transformations that should be pruned by treating each
change introduced by patch p separately. If FixMorph fails to find an alignment in
vi for a modified statement, FixMorph prunes the corresponding transformation.

Patch Validation FixMorph applies R with the above mentioned adjustments
from post-processing, to backport the patch p from vmainline to vi. FixMorph first
validates the patched vi via compilation to check for build errors. If tests are
available, FixMorph can further validate the patched vi.

6.5 Implementation
Although we synthesize transformation rules using a Refazer-like approach, we
cannot directly reuse the Refazer tool since it is designed for C# and Python pro-
grams. FixMorph is composed of three main components (Build engine, Trans-
formation rule synthesis and Source code transformation) and amounts to 10,918
code lines in Python and 2,645 code lines in C++.

The Build engine is used initially to build typed ASTs and finally to validate
the patched code. The build engine is based on LLVM/Clang, to benefit from its
facilities for source-to-source transformation and handling of macros. Clang does,
however, elide #ifdefs, which can lead to missing some code. To limit the number
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of cases that are considered, our build engine tries two strategies 1) rewrite all
#ifdefs to #if 1 and 2) rewrite all #ifdefs to #if 0.

Transformation Rule Synthesis. To synthesize transformation rules, we used
Clang to translate the concrete patch to the extended DSL. To generate align-
ment, we use the LLVM GumTree implementation as the AST differencing algo-
rithm [75]. The ASTs used by the original LLVM GumTree implementation only
include NodeKind and Code; we added information about types, position, function
names, filenames, etc.

Source code Transformation. While our synthesis algorithm is expressed in terms
of ASTs, FixMorph transforms source code by leveraging the unique source to
source transformation features provided by Clang/LLVM. Accordingly, the code
layout and comments not affected by the patch are preserved.

6.6 Evaluation
In this section, we evaluate the effectiveness of FixMorph in backporting patches
and answer the following research questions:

RQ1 Can FixMorph backport fixes of security vulnerabilities?

RQ2 How effective is FixMorph in backporting patches?

RQ3 How does FixMorph compare with existing tools?

6.6.1 Experimental Setup

Dataset: To evaluate FixMorph, we build our dataset in the form of patch pairs
(pmainline, pi), where pmainline is the patch committed to the mainline version, and
pi is the patch backported to vi. We build our dataset according to the following
criteria:

• Patch pmainline was submitted to the mainline during 2011-2019 and versions
below 5.0;

• To generate typed ASTs, the mainline version should be compilable before and
after introducing pmainline, and version vi should be compilable before pi. We
omit the subjects for which we cannot generate complete ASTs;
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• Our prototype only supports modification to *.c files, not header files, hence the
patch should only modify *.c files. Further to reduce the complexity, we select
patches affecting a single *.c file.

• If pmainline has been backported to multiple versions, we select the oldest one as
pi which represents the most challenging task;

• We eliminate the patches that have been used in our study (Section 6.2.3) to
ensure no overlap between our study and evaluation.

Selecting patches affecting only a single *.c file may indeed focus the evaluation on
simpler patches. Nevertheless, we find that 80% of all backported patches in the
Linux kernel (42036/51663) affect only a single file. We filter the backported patches
using the above criteria, and randomly select 350 pairs to construct our dataset.
Table 6.2 shows the distribution of the patch size (number of lines changed) in our
dataset.

Table 6.2: Patch size distribution in FixMorph dataset

Lines 1-2 3-4 5-6 7-8 9+ Total
Patches 165(47%) 78(22%) 50(14.5%) 29(8.5%) 28(8%) 350(100%)

Moreover, we evaluate FixMorph in backporting security vulnerabilities by
selecting 30 patches that fix CVEs using the same criteria. We focus on the CVEs
reported during 2014-2019, and made sure that the 30 CVE patches are disjoint
from the 350 patches in our main dataset.

All experiments are conducted on a Dell PowerEdge R530 with Intel(R) Xeon(R)
CPU E5-2660 processor and 64GB RAM.

6.6.2 Experimental Results

6.6.2.1 Backporting Security Vulnerability Fixes

To investigate the usefulness of FixMorph in backporting security vulnerability
fixes, we evaluate FixMorph on 30 CVE fixes. Table 6.3 shows the statistics of
our targeted CVEs, including the CVE id, vulnerability type, the patch commit id,
and the release and target versions. It also shows the evaluation results, where the
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column“Result” indicates whether the backported patch is semantically equivalent
to the developer backported patch.

FixMorph was able to successfully backport 21 out of 30 CVE patches fixing
a variety of bugs with semantic equivalence to the developer ported patch. These
results suggest that FixMorph can be useful in helping developers fix security
vulnerabilities effectively. We also manually analyzed the reasons for the failed
cases. For some cases (e.g., CVE-2018-10879), FixMorph could not determine the
correct patch locations because the mainline and target version are very different.
For some cases, the adaptation requires complex code changes that would involve
understanding the patch semantics.

6.6.2.2 Effectiveness of FixMorph

To evaluate the effectiveness of FixMorph, for each pair (pmainline, pi), we use
FixMorph to automatically backport pmainline from the mainline to vi, and use
the developer backported patch pi to verify the correctness of the auto-backported
patch. We evaluate the correctness of the auto-backported patches by checking
their syntactic and semantic equivalence with the developer backported patches.

Table 6.4 summarizes our evaluation results. Column “Type” indicates the class
of subjects as defined in Section 6.2.3 and “Total” is the number of pairs for each
type. Column “Plausible” shows the number of backported patches that can be
compiled in the form of x (y%), where x is the total number of instances that
were backported and y represents the percentage. Columns “Syntactic” and “Se-
mantic” represent the number of patches that are syntactically and semantically
equivalent to the developer backported patch, respectively. Out of the 350 sub-
jects, FixMorph can backport 285 of them without introducing build failures,
which accounts for 81.4%. 245 subjects (70.0%) result in code that is identical to
the developer’s patch, while 263 subjects (75.1%) result in code that is semantically
equivalent to the developer’s backported patch. FixMorph shows good results in
Type-I, II, and III, indicating its effectiveness in identifying correct patch locations
and changing the namespace. Type-IV requires changing both the patch location
and namespace, which is more challenging, but FixMorph still can correctly back-
port 54.7% of them. Type-V includes the most challenging cases, where 42.7% of
the patches are correct. The main reason is that FixMorph fails to transform some
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Table 6.3: Results of backporting CVE tagged bug fixes

CVE ID Vuln
Type

Patch
Commit

Release
Version

Target
Version Result

CVE-2018-1118 IL 670ae9ca 4.17 4.9 3

CVE-2018-19985 MO 5146f95d 4.20 3.16 7

CVE-2019-3701 DoS 0aaa8137 5.0 3.16 3

CVE-2017-0786 IL 17df6453 4.14 3.16 3

CVE-2018-1092 NPD 8e4b5eae 4.16 3.2 3

CVE-2018-1108 RNW dc12baac 4.17 4.14 7

CVE-2014-8481 NPD a430c916 3.18 3.17 3

CVE-2015-7513 DZ 0185604c 4.4 3.2 3

CVE-2018-16658 IL e4f3aa2e 4.19 3.16 3

CVE-2018-1094 NPD a45403b5 4.16 4.14 7

CVE-2018-9363 IO 7992c188 4.18 3.16 3

CVE-2018-10881 MO 6e8ab72a 4.17 3.16 3

CVE-2018-10879 UAE 5369a762 4.17 3.16 7

CVE-2016-9191 DoS 93362fa4 4.10 3.12 3

CVE-2018-10880 DoS 8cdb5240 4.17 3.16 7

CVE-2016-0728 IO 23567fd0 4.4 3.10 3

CVE-2018-11412 MO 117166ef 4.17 3.16 3

CVE-2017-7184 MO 677e806d 4.11 3.2 3

CVE-2015-5257 NPD cbb4be65 4.3 3.2 7

CVE-2017-12153 NPD e785fa0a 4.14 3.2 3

CVE-2016-0758 IO 23c8a812 4.6 3.12 3

CVE-2016-6213 DoS 296990de 4.12 4.1 3

CVE-2014-9529 MO a3a87844 3.19 3.2 3

CVE-2017-11600 MO 7bab0963 4.13 3.2 3

CVE-2017-12193 NPD ea678998 4.14 3.16 7

CVE-2016-3713 IL 9842df62 4.6 4.4 3

CVE-2017-8824 UAF 67f93df7 4.16 3.2 3

CVE-2016-8650 MO f5527fff 4.17 3.16 3

CVE-2017-2584 IL 129a72a0 4.10 3.10 7

CVE-2018-14633 MO 18164943 4.19 3.16 7

Total - 30 - - 21
RNW : Random Number Weakness, NPD: Null Pointer, DoS : Denial of Service, UAF : Use After Free,

MO: Memory Overflow, IL: Information Leakage, IO: Integer Overflow, DZ : Divide by Zero
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Table 6.4: Effectiveness of FixMorph in backporting kernel patches

Type Total Plausible Syntactic Semantic
I 1 1 (100%) 1 (100%) 1 (100%)
II 235 216 (91.9%) 204 (86.8%) 204 (86.8%)
III 9 7 (77.8%) 4 (44.4%) 7 (77.8%)
IV 30 22 (73.3%) 16 (53.3%) 19 (63.3%)
V 75 41 (54.7%) 22 (29.3%) 32 (42.7%)
Total 350 285 (81.4%) 245 (70.0%) 263 (75.1%)

complex logic and structural changes. To backport, reasoning about the semantics
of those patches is needed, which is out of the scope of this work.

6.6.2.3 Comparison with Existing Tools

To compare FixMorph with existing techniques, we consider the following baseline
approaches:

• patch: the patch tool [72] from GNU Diffutils; by default, patch requires the
change to occur at the indicated line numbers;

• patchc: the patch tool in context mode [72] (-context option), providing flexi-
bility about how many of the patch’s context lines are required to be matched;

• Sydit*: our reimplementation of Sydit [94] for C; Sydit is a program trans-
formation tool for Java that learns a transformation rule from a single example,
in which it simply generalizes all the identifiers and patch locations. Sydit* fol-
lows Sydit, but uses GumTree [34] instead of ChangeDistiller [35] as the AST
differencing algorithm. This should benefit Sydit* because GumTree has been
shown to be more accurate than ChangeDistiller.

For a fair comparison, we provide the correct file to patch to all these tools by
querying the Git version control system.

Table 6.5 summarizes our quantitative comparison results. Columns 3–6 repre-
sent the correctly backported patches by patch, patchc, Sydit*, and FixMorph,
respectively. The result for each tool and each class is shown in the form x (y%),
where x is the number of patches that have been correctly backported, and y is
the accuracy. Despite having the extra advantage of localizing the correct source
file, the patch tool still failed to correctly backport around half of the instances
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Table 6.5: Quantitative comparison of FixMorph with existing tools

Type Total patch patchc Sydit* FixMorph
I 1 1 (100%) 1 (100%) 0 (0%) 1 (100%)
II 235 124 (53%) 182 (77%) 89 (38%) 204 (87%)
III 9 0 (0%) 0 (0%) 2 (22%) 7 (78%)
IV 30 0 (0%) 0 (0%) 6 (20%) 19 (63%)
V 75 0 (0%) 0 (0%) 0 (0%) 32 (43%)
Total 350 125 (36%) 183 (52%) 97 (28%) 263 (75%)

in Type-II. This illustrates the difficulty in identifying the correct patch locations.
In contrast, patchc performs better than the patch tool because it uses context
information to find the correct patch location. The key insight we draw from this
observation is that context information is important in identifying patch locations.
Sydit* performs quite well in backporting patches to the correct location due to
the usage of additional AST context information. However, since transformation
rules synthesized by Sydit* are usually over-generalized, Sydit* incorrectly back-
ports the patches to many locations where the patch should not be applied. We
regard a backport as a false positive if it produces a patch that modifies the wrong
locations in vi. Overall, Sydit* produces 97 correct patches that are semantically
equivalent to the developer patches. FixMorph outperforms all the above tools,
especially for the challenging cases, i.e., Type-III, IV, and V. The transformation
guided by the alignment of the mainline and target version allows FixMorph to
correctly backport more Type-III, IV, and V patches.

Table 6.6: Qualitative comparison of FixMorph with existing tools

Type patch patchc Sydit* FixMorph
P% R% P% R% P% R% P% R%

I 100 100 100 100 0 0 100 100
II 77 63 99 78 46 69 95 91
III 0 0 0 0 29 50 100 78
IV 0 0 0 0 38 30 86 70
V 0 0 0 0 0 0 78 48
Total 71 42 82 59 44 43 92 80

To better understand the reliability of each tool, we further evaluate the quality
of the transformations for each tool by calculating the precision and recall. Table 6.6
shows the qualitative comparison results. Columns “P%” and “R%” indicate the
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precision and recall, respectively. Overall, FixMorph produces much fewer in-
correctly backported patches (higher precision) and misses much fewer cases that
should be patched (higher recall) than the other tools.

6.6.3 Threats to Validity

Several threats may affect the validity of our evaluation. First, since the baseline
tool Sydit is designed for Java programs, to compare with it, we implemented
Sydit* by ourselves. We tried our best to follow Sydit’s design, but the differences
in implementation details may still affect its results. Second, although FixMorph
shows strong efficacy on the evaluated benchmark, it may perform differently on
other subjects. To mitigate this problem, we evaluated FixMorph on a fairly large
dataset that covers different scenarios. Last, we manually compare the backported
patches with developers’ patches to verify their correctness. To reduce the potential
bias caused by manual analysis, two authors of this paper independently double
checked the correctness of generated patches.

Limitations of FixMorph Our implementation is based on LLVM/Clang, and
thus inherits the limitations of that framework. Since handling all combinations of
compilation options is not scalable, when compiling the project, we only consider
two sets of compilation options (see Section 6.5). This strategy works for most
cases, but in some cases, it could result in certain un-compiled blocks of code being
unavailable to FixMorph, thus leading to incomplete backporting or even failure.
To alleviate this limitation, we allow users to specify the values of preprocessor
variables according to their working environment.

6.7 Summary
We investigated the backporting activities in the Linux kernel because it is a large-
scale widely used codebase. The sheer complexity of the patches, the diversity of
the transformations involved, and the absence of test cases as specification pose
additional challenges in fixing security vulnerabilities. Due to the popularity and
importance of the Linux kernel, there is a significant practical value for reducing
exposure to security vulnerabilities. With the attack surface moving to edge devices
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(which may be running older versions of Linux), propagating patches to old Linux
versions can be a meaningful security enhancement aid.

To reduce the exposure to known vulnerabilities, we study the problem of auto-
mated patch backporting, to automatically backport security patches. We propose
a technique inspired from program synthesis technique, and our evaluation shows
that our implementation FixMorph is effective in backporting security patches
(i.e., successfully backported 21/30, that is, 70% of the evaluated CVEs). Although
we only evaluate on the Linux kernel, Table 6.3 shows that FixMorph can back-
port patches for various types of vulnerabilities. Instead of repetitive generation of
patches from scratch, our proposed solution helps backport patches to fix software
security vulnerabilities that exist in older versions of the same software.
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CHAPTER 7. VULNERABILITY REPAIR VIA PATCH TRANSPLANTATION

Chapter 7

Vulnerability Repair via
Patch Transplantation
In this chapter, we formulate and study a problem related to security vulnerability
repair, namely automated patch transplantation. A patch for an error in a donor
program is automatically adapted and inserted into a “similar” target program. We
observe that despite standard procedures for vulnerability disclosures and publish-
ing of patches, many un-patched occurrences remain in the wild. One of the main
reasons is the fact that various implementations of the same functionality may exist
and, hence, published patches need to be modified and adapted. Therefore, we pro-
pose and implement a workflow for transplanting patches. This chapter introduces
the patch transplantation problem, and explains why it is an important problem
to tackle in the context of repairing software security vulnerabilities. The chapter
starts with an overview of the patch transplantation problem and its necessity. It
continues with an illustrative example to demonstrate the challenges, and formally
define the patch transplantation problem. Afterwards, the chapter continues with
the technical details of our proposed solution and concludes with a preliminary
evaluation, showing the effectiveness of our proposed approach to remedy a class of
security vulnerabilities known as recurring-vulnerabilities.

7.1 Overview
If the patch for an error or a vulnerability in a buggy program P is available
(e.g., the vulnerability has been patched manually and the fix is available), can
the patch be automatically transplanted or adapted into another “similar" buggy
program P ′? We call this the automated patch transplantation problem. Many use-
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cases which can benefit from a solution to automate patch transplantation exist.
First, security fixes in the latest software version may be “backported" to older
program versions. Such backporting is not restricted to security fixes but also can
be used to enhance compatibility issues in software versions, such as managing the
collateral evolution of device drivers to enable their functioning despite evolution
of the operating system. (e.g., prior work on evolution of Linux backporting [102]).

Second, patch transplantation can be useful for propagating fixes to different
implementations of the same protocol or functionality, as opposed to different ver-
sions of the same program. Implementations of the same protocol or functionality
can differ due to the difference in the programming language or difference in im-
plementation while using the same programming language. Porting a patch across
languages is more challenging and beyond the scope of the patch transplantation
problem. To elaborate on the transplantation across different implementations,
let us consider the Heartbleed vulnerability (CVE-2014-0160), which could lead to
disclosure of private information by applications using OpenSSL [32]. Although a
patch for the Heartbleed vulnerability is available, it cannot be immediately in-
serted into any OpenSSL implementation, instead the patch needs to be adapted.
As different web servers rely on different implementations of OpenSSL, Heartbleed
continues to persist in the wild [124], despite the patch being widely available. Thus
by automatically adapting patches of Heartbleed to other vulnerable OpenSSL im-
plementations, we can reduce the exposure to vulnerabilities.

In general, one of the crucial steps towards defense against published exploits
is to integrate available patches into one’s system as quickly as possible. The chal-
lenge in incorporating patches from different sources is to be able to adapt the code
modifications involved. Often, shared libraries are customized with new features,
different data structures or rewriting previous implementation to match the inte-
grated environment. Hence, directly applying a general patch is not trivial and
sometimes difficult.

Problem Statement Given buggy and fixed donor programs Pa, Pb, and a buggy
program similar to Pa, also called a host or target program Pc, the goal is to fix Pc
to produce a fixed version of Pc, namely Pd. We assume that Pa and Pc fail on the
same failing input tF .
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For security patches, tF is an exploit which takes advantage of an existing soft-
ware vulnerability. A formulation of the automated patch transplantation problem
explaining the inputs and outputs of the problem appears in Figure 7.1. Note that
Pa, Pb, Pc, tF are inputs to the patch transplantation problem, and the output is Pd,
the program with the transplanted patch.

Pa
Buggy
Program Pb

Fixed
ProgramPatch

Fail

Failing input

Pass

Pc

Similar Buggy
Program or 
“Host”

Pd
Fixed Program after 
TransplantationPatch

Fail

Failing input

Pass

Transplanted

tF

tF
Automated Patch 
Transplantation 

Pa Pb Pc tF

Pd

Figure 7.1: The Automated Patch Transplantation Problem

Differences with other problems studied We note that the patch transplan-
tation problem formulated by our work is different, though related, to the program
repair problem and the program transplantation problem. The program repair
problem seeks to (minimally) modify a program so as to meet a correctness crite-
ria such as passing a given test-suite. To relieve the burden of fixing bugs, many
techniques have been previously proposed for automated program repair such as ge-
netic programming, semantic analysis based repair techniques, and machine learning
guided techniques. Unlike the automated repair problem we do not try to synthe-
size patches or fit into patch patterns; instead the patch transplantation problem is
more “goal-directed”— it automatically identifies a patch from the donor, extracts
the identified patch, computes an insertion location for the patch in the target pro-
gram and inserts that patch by adapting to the context of the insertion point. The
patch transplantation problem is also different from the program transplantation
problem. The program transplantation problem deals with transplanting a feature
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from program P into another program P ′ such that the transplanted feature must
not disrupt the existing functionality of its target P ′ and must actually execute and
add the functionality of the desired feature to its target. These techniques are lim-
ited to transferring a logical block of code (such as a function or a check) instead of
patches that may involve several disjoint blocks of code. Moreover, program trans-
plantation techniques typically require manual identification of the insertion point,
unlike our patch transplantation problem where the insertion point is automatically
identified.

7.2 Example
We next present an example of an integer overflow error in OpenJPEG (a C library
for the open-source JPEG2000 codec) to have a better understanding of the chal-
lenges in the patch transplantation problem. Figure 7.2 shows the integer overflow
error in OpenJPEG, this code snippet is simplified for brevity. There is a potential
overflow at line 560, where OpenJPEG allocates memory to cp->tcps by comput-
ing the value as cp->tw * cp->th. Input image files with large width and height
fields may cause the calculation at line 560 to overflow, eventually writing beyond
the end of the allocated buffer. In the error-triggering input, the JPG file height
field is 210 and the width field is 2147483646.

405 static void j2k_read_siz (opj_j2k_t *j2k) {
415 image->y1 = cio_read(cio, 4); /* Ysiz */
416 image->x0 = cio_read(cio, 4); /* X0siz */
417 image->y0 = cio_read(cio, 4); /* Y0siz */
418 cp->tdx = cio_read(cio, 4); /* XTsiz */
419 cp->tdy = cio_read(cio, 4); /* YTsiz */
420 cp->tx0 = cio_read(cio, 4); /* XT0siz */
421 cp->ty0 = cio_read(cio, 4); /* YT0siz */

423 if ((image->x0<0)||(image->x1<0)||(image->y0<0)||(image->y1<0)) {
424 opj_event_msg(j2k->cinfo, ...);
427 return;
428 } ...
517 cp->tw = int_ceildiv(image->x1 - cp->tx0, cp->tdx);
518 cp->th = int_ceildiv(image->y1 - cp->ty0, cp->tdy);
519 ...

/* the overflow error */
560 cp->tcps = (opj_tcp_t*) opj_calloc(cp->tw * cp->th, sizeof(opj_tcp_t)); ...
622 }

Figure 7.2: Overflow error in OpenJPEG 1.5.1
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Automated Program Repair. Consider the scenario where we attempt to fix
this bug using two state-of-the-art program repair tools (F1X[89] and Prophet[79]).
Since these two APR techniques require a test suite, we created a test suite inclu-
sive of the failing test case and a passing test case, and also provided the correct
location for the fix to generate the patch, which enables us to compare the two
patches generated at the same location. Figure 7.3a and 7.3b show the two patches
generated by F1X and Prophet, respectively. F1X was able to generate a patch
which modifies an existing if statement to avoid the failing test case. However, the
fix in Figure 7.3a does not generalize for test cases beyond the given test suite,
since it only fixes the two given test cases. Similarly, Prophet generated a patch
which omits the execution of a statement (i.e., Line 518 in Figure 7.2) by inserting
a condition which is always false (i.e., semantically equivalent to deleting a state-
ment). The correct patch for this bug would be to evaluate if the computation of
cp->tw * cp->th would result in an overflow and avoid the overflow by following
an error handling procedure. Both APR generated patches failed to generalize the
patch to the extent of avoiding the overflow, rather generated a patch that could
simply pass the failing test suite. Prophet is a technique based on machine learning
which generates arbitrary code changes and relies on the test suite for correctness,
whereas F1X is semantic-based which uses code analysis to generate the patch that
attempts to address the underlying bug rather than changing the code just enough
to satisfy the test suite. However, it relies on the test suite to generate the cor-
rect constraints to obtain the correct patch. If sufficient test cases are provided,
the generated patch would be more generalized. This example highlights one of
the limitations of current automated program repair techniques, which is generally
known as the overfitting problem [133, 110, 87]. As illustrated in our motivational
example, APR generated patches cannot repair bugs without sufficient number of
test cases to generalize the patch, and the sufficient number differs from one bug to
another. When used to fix security vulnerabilities, such inaccurate patches could
lead to undesirable effects by believing that the vulnerability has been fixed when
in fact it has not.
Patch Transplantation. A different implementation of the JPEG2000 codec can
be found in JasPer (a utility for image manipulation) which could also serve as
a fix for this vulnerability in OpenJPEG. We discovered that the input file that
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405 static void j2k_read_siz (...) { ....
423 if ((image->x0<0)||(image->x1<0)||

(image->y0<0)||(image->y1<0)) {
423 if ((image->x0==0)||(image->x1<0)||

(image->y0<0)||(image->y1<0)) {
....

622 }

(a) Patch generated by F1X

405 static void j2k_read_siz (...) { ....
517
518 if (!(1))
519 cp->th = int_ceildiv(image->y1 - cp->ty0,
520 cp->tdy);

....
623 }

(b) Patch generated by Prophet

Figure 7.3: Patches generated using Automated Program Repair

exploits the vulnerability in OpenJPEG 1.5.1 is able to exploit the same vulnera-
bility in JasPer 1.900.12, and also fixes the bug in JasPer 1.900.13. Our proposed
approach will extract the code that fixes the bug in JasPer 1.900.13 and insert
into OpenJPEG 1.5.1 in the following way. First, we build the binaries with an
integer sanitizer to identify potential overflow locations. Next, we check if the two
programs share the same vulnerability. In our example, both JasPer 1.900.12 and
OpenJPEG 1.5.1 throw integer overflow errors due to multiplication operation of
210 * -2147483646. We identify the line number jpc_dec.c@1234 in JasPer 1.900.12
as the donor buggy location and line number j2k.c@560 in OpenJPEG 1.5.1 as the
target buggy location.
Donor Selection. Figure 7.5a shows the patch for JasPer 1.900.13 which includes a
check. Specifically, JasPer at commit b9be3d9 contains the vulnerability and JasPer
at commit d91198a contains the fix (i.e., the pair selection is JasPer-b9be3d9 (Pa),
JasPer-d91198a (Pb), OpenJPEG-1.5.1 (Pc)).
Patch Extraction. Next, analyses the source code diff and aligns the execu-
tion trace of Pa and Pb to narrow down the changes to be the patch that fixes
the bug. Lines 1198 and 1235-1238 in Figure 7.5a are the changes in JasPer
1.900.13 that checks if the multiplication results in an overflow through a func-
tion jas_safe_size_mul. This function determines if an overflow will occur if
the two parameters (dec->numhtiles and dec->numvtiles) are multiplied. If an
overflow occurs, it will return false, otherwise, it will return true and assign the
multiplication result to the size variable.
Concolic Execution. Once we identify the patch for transplantation, we need
to translate the statements in the patch and find the insertion point. For this
purpose, we perform concolic execution [119] on all three programs in our pair
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selection with the same input file to capture the symbolic paths for the execution
of each program. When identifying the insertion point for the transplantation, the
patch can be inserted at any location from the starting point of the execution trace
to the crashing point (or a suspicious buggy point). As there could be potentially
many candidate locations, we identify a divergent point (see Def 4) in Pc, similar
to the divergence caused by the patch in Pb with respect to Pa. A divergence in
the trace of Pb with respect to Pa is caused by a code change (i.e. patch) which
resulted in the difference and is most likely to be a potential divergent point at
which the patch has been applied to. One of the potential divergent points is the
condition at line 1235 in Figure 7.5a. We find a similar location in Pc using partial
path condition dominance (see Def. 6). We calculate the partial path condition in
Pb at line 1235 in Figure 7.5a, and we traverse through the execution trace of Pc to
find a similar location where the partial path condition dominates, i.e dc.

Figure 7.4: Variable mapping between OpenJPEG and JasPer

Candidate Function. Once we have identified a divergent point in Pc, the next
step is to traverse through the estimated divergent point dc and the crashing point
lc in Pc, in order to identify the candidate functions to transplant the patch. For
each function f executed in Pc from and inclusive of dc up to lc, we consider the vari-
ables used within the function f . For each variable v in f , we capture the symbolic
expressions and generate a mapping with the variables used in our patch. More pre-
cisely, we check for a function that has a mapping for the variables dec->numvtiles
and dec->numhtiles, which is likely to be a candidate function. Among all candi-
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date functions, we choose the first candidate in the trace (that is the function that
executes first) for two reasons: (1) the patch can impact more paths and (2) the
vulnerability is fixed earlier in the execution of the failing input. In our example,
the divergent point and the crashing point lie in the same function j2k_read_siz.
However, this may not hold for the general cases as the divergent point and the
crashing point can be in two different functions.
Candidate Location. We consider the availability of the variables we mapped
at previous stage, for each location in our candidate function to find candidate
locations for our patch. For each statement inside the function, we compute the
list of available variables, and find the candidate points where the variables in our
generated mapping are usable. Among the candidate locations, we choose the first
candidate for the same reasons mentioned above. In our example, we choose line
number 519 in Figure 7.2.
Code Transplantation. Once we have identified the insertion location as line
number 519 in Figure 7.2, our next step is to translate the patch to the namespace
of Pc, and insert the code at the identified insertion location. We make use of AST
node context information from both Pa and Pc programs to adapt to the insertion
point context. Then, we translate the variables to the namespace of OpenJPEG
using symbolic analysis (explained in Section 4.3), where we obtain the mappings
of dec->numvtiles into cp->tw and dec->numhtiles into cp->th as illustrated in
Figure 7.4. We use this mapping to translate the variable names in the patch while
weaving the patch into the insertion point in Pc. Using dependency analysis, we
identify that jas_safe_size_mul function is missing in our target program Pc. We
perform transplantation of this function by following the same steps (i.e., extract
the missing source, translate the variables, find a suitable insertion location and
transplant into the target program) such that the function can be called within the
inserted patch.
Final Result. Patch transplantation is able to successfully repair the bug in Open-
JPEG 1.5.1, preventing any potential buffer-overflows due to the integer overflow
caused during the calculation of the buffer size as shown in Figure 7.5b. Although
F1X [89] and Prophet [79] were able to generate patches that pass the failing test
case, the generated patches are of poor quality due to the quality of the test suite.
This is where, patch transplantation differs from test driven patch generation: a)
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1188 static int jpc_dec_process_siz(...)
{

....
1198 size_t size;

...
/* overflow check */

1235 if (!jas_safe_size_mul(dec->numhtiles,
dec->numvtiles, &size)){

1236 return -1;
1237 }

dec->numtiles = dec->numhtiles * dec->
numvtiles;

1238 dec->numtiles = size;
1241 if (!(dec->tiles=jas_alloc2(dec->numtiles

,sizeof(jpc_dec_tile_t)))){

1242 return -1;

1243 }
....

1290 }

(a) Developer patch in JasPer 1.900.13

/* Adapted patch for OPENJPEG 1.5.1 */
48 #define SIZE_MAX (18446744073709551615UL)
56 inline static bool jas_safe_size_mul(size_t

x, size_t y, size_t *result){
57 if (x && y > SIZE_MAX / x) {
58 return false;
59 }
60 *result = x * y;
61 return true;
62 }

440 static void j2k_read_siz (opj_j2k_t *j2k) {
554 size_t size;
556 if (!jas_safe_size_mul(cp->tw, cp->th, &size

)) {
557 return -1;
558 }

/* the overflow error */
601 cp->tcps = (opj_tcp_t*) opj_calloc(cp->tw *

cp->th, sizeof(opj_tcp_t));
663 }

(b) Transplanted Patch in OpenJPEG 1.5.1

Figure 7.5: Patch generated using transplantation

the patch is a human-written patch which is extracted and then adapted to the
context of the target program (i.e., Pc). Since human-written patches are more reli-
able and general than the generated patches via APR, we eliminate the problem of
overfitting as further proved in our experimental results in Table 7.6 (Section 7.6).
The result of differential fuzzing highlights that the patches generated using APR
do not generalize for unseen test cases; b) patch transplantation can fix more bugs
compared to program repair techniques because APR relies on a good test suite
for fault localization to identify patch locations. Since patch transplantation does
not depend on a test suite, with the use of the partial path condition dominance
relationship (see Def. 6) we can find the correct patch location.

7.3 Problem Formulation
Although programs with vulnerabilities may not share common code, they can share
different implementations of the same protocol (e.g., OpenSSL) or same standard
(e.g., JPEG 2000). Hence, finding a vulnerability in one program can lead to ma-
licious users adapting attacks to other similar programs. This is the scenario we
seek to prevent via automated patch transplantation. In this section, we first intro-
duce the notations that we will use in this chapter and then formulate the problem
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of patch transplantation. Pa represents the buggy version of a program, whereas
Pb (also known as the donor in the terminology used in software transplantation [9])
denotes the subsequent version in which the fault in Pa is fixed. tF represents the
test that failed in Pa but passes in Pb, while Pc denotes the target program (also
known as the host in the terminology used in software transplantation [9]) that fails
in tF .

Definition 1 (Similar Vulnerability). We consider two vulnerabilities as similar if
there exists a failing test tF exploiting both vulnerabilities and the two vulnerabilities
exhibits the same output in terms of the return code and crashing/buggy instruction.
For instance, the motivational example in Section 7.2 where both JasPer 1.900.12
and OpenJPEG 1.5.1 exhibited similar integer overflow vulnerability for the same
test case.

Definition 2 (Similar Programs). We consider two programs Pa and Pc as similar
if there exists a failing test tF exploiting a similar vulnerability in both programs.
Our goal is to transplant a fix of Painto the other similar program Pc.

Definition 3 (Patch Transplantation). Given a pair of buggy and fixed programs
(Pa , Pb) and a program Pc similar to Pa, we try to extract the patch between Pa and
Pb. The patch is then inserted into Pc which involves finding an insertion point,
and adapting the patch with new variable mappings and context information.

Type missing dependency? namespace translation? example
Class-I No No porting across forks
Class-II Yes No backporting
Class-III No Yes collateral evolution
Class-IV Yes Yes collateral evolution

Table 7.1: Classes of patch transplantation

7.3.1 Classes of Patch Transplantation

There are three major challenges in transplanting a patch from Pb to Pc due to
the differences in the two programs. The first challenge is the difference between
the namespace and data structures used in the two implementations where the
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identifiers are not identical, hence an adaptation for the variables is required. The
second challenge is to identify and transplant missing dependencies for the patch to
work. For example, the patch would require a supplementary function, a subroutine
or a definition that is used in the patch, which is missing in the target program Pc.
The third challenge is to correctly identify the insertion location of the patch in Pc.

To perform a thorough analysis of the patches, we identify four classes of patches
based on the origin of the patch and the adaptation required for the target system
to apply the patch (Table 7.1). Further, we define an equivalence relation between
the original patch and transplanted patch based on the adaptation required as given
below.

Syntactically Equivalent. Patchfix is “Syntactically Equivalent” if Patchorig and
Patchfix are exactly the same code. If the namespace and data structure of the two
programs Pb and Pc are identical, and the code is identical the transplanted patch
would be syntactically equivalent to the original patch.

Semantically Equivalent. Patchfix is “Semantically Equivalent” if Patchorig and
Patchfix are not syntactically the same but produce the same semantic behavior.
This requires a namespace and/or data structure translation.

7.3.1.1 Class-I : Syntactically Equivalent Transplantation

No adaptation is required for the transplantation. This is the trivial case where the
original patch can be applied directly. An example is the backporting of patches to
past versions of the same program or porting patches across forked projects.

The patch for CVE-2018-14526 is an example for Class-I. It is a vulnerability
in the processing of EAPOL-Keyframes for wpa_supplicant1. An attacker could
modify the frame to bypass authentication. To fix this vulnerability, an official
patch2 in Listing 7.6a was released and adapted by every operating system that
provides the wpa_supplicant driver. FreeBSD driver had to integrate this patch to
two different versions of its forks and Listing 7.6b shows the patch3 for FreeBSD

1wpa_supplicant is a WPA Supplicant for Linux, BSD, Mac OS X, and Windows with support
for WPA and WPA2 (IEEE 802.11i /RSN)

2https://w1.fi/security/2018-1/0001-WPA-Ignore-unauthenticated-encrypted-EAPOL-Key-
data.patch

3https://www.freebsd.org/security/patches/SA-18:11/hostapd-10.patch
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int wpa_sm_rx_eapol(...){
....
if ((sm->proto == WPA_PROTO_RSN ||

sm->proto == WPA_PROTO_OSEN) &&
(key_info & WPA_KEY_INFO_ENCR_KEY_DATA)

&&
mic_len) {

if (!(key_info & WPA_KEY_INFO_MIC)) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Ignore EAPOL-Key with encry..");

goto out;
}

if (wpa_supplicant_decrypt_key_data(sm, key
, mic_len, ver, key_data,&key_data_len
))

....
}

(a) Dev patch for wpa_supplicant 2018-1

int wpa_sm_rx_eapol(...){
....

if (sm->proto == WPA_PROTO_RSN &&
(key_info & WPA_KEY_INFO_ENCR_KEY_DATA)

) {

if (!(key_info & WPA_KEY_INFO_MIC)) {
wpa_msg(sm->ctx->msg_ctx, MSG_WARNING,
"WPA: Ignore EAPOL-Key with encry..");

goto out;
}

if (wpa_supplicant_decrypt_key_data(sm, key
, ver))

....
}

(b) Dev patch for FreeBSD SA-18:11

Figure 7.6: Example for Class-I: CVE-2018-14526

10.4. The FreeBSD developer had to identify the insertion point in the FreeBSD
driver, which is different from the original patch, but no adaptation was required for
the patch code itself. This highlights the fact that even for identical patches finding
the insertion point is non-trivial as the predicates in which the patch is inserted in
Listing 7.6a and Listing 7.6b are different.

There is a potential issue in the case where WPA2/RSN style of EAPOL-Key
construction is used with TKIP negotiated as the pairwise cipher. Hence, a patch
was released by the standard organization and adapted by every operating system
that provides the wpa_supplicant driver. The developers at FreeBSD had to iden-
tify the correct insertion point but no adaptation was required for the patch code
itself as depicted above. The context is different with respect to the variable names
and additional code in place in FreeBSD as shown in listing 7.6b, compared to the
original patch shown in listing 7.6a.

7.3.1.2 Class-II : Syntactically Equivalent Transplantation
with Dependency

A dependent function is required for the patch to apply the solution. The dependent
component could be from the original patch or could be a missing supplementary
code in the recipient program. For example, adding functions for the patch from
latest version, which is missing in the old version.

CVE-2006-4806 is an example for Class-II, where the patch requires an depen-
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char load(ImlibImage * im ..) {

....
im->w = w = cinfo.image_width;
im->h = h = cinfo.image_height;

if (!IMAGE_DIMENSIONS_OK(w, h)){
im->w = im->h = 0;
jpeg_destroy_decompress(&cinfo);
fclose(f);
return 0;

}
....
}

(a) Developer’s patch in imlib2 1.4.3

# define IMAGE_DIMENSIONS_OK(w, h) \
( ((w) > 0) && ((h) > 0) && \
((unsigned long long)(w) * \
(unsigned long long)(w) <= \
(1ULL << 29) - 1) )

char load(ImlibImage * im ..) {
....
im->w = w = cinfo.image_width;
im->h = h = cinfo.image_height;
if (!IMAGE_DIMENSIONS_OK(w, h)){
return 0;
}

....
}

(b) Adapted patch for imlib2 1.4.0

Figure 7.7: Example for Class-II: CVE-2006-4806

dent function to transplant the patch in the recipient program. It occurs due to a
buffer overflow in imlib2 (an image file processing library) which could allow remote
attackers to cause a denial of service attack. To fix the vulnerability, developers of
imlib2 applied a patch (Figure 7.7a) which includes a supplementary function named
IMAGE_DIMENSIONS_OK which checks if the provided width and height (im->w and
im->h) are within standard limits of the application to prevent memory overflow.
The same vulnerability exist in older version of imlib2, specifically in imlib2 1.4.0
which does not include the definition of the function IMAGE_DIMENSIONS_OK, hence
the transplantation of the patch (Figure 7.7b) involves the dependency for the patch
to correctly fix the vulnerability in imlib2 1.4.0.

7.3.1.3 Class-III: Semantically Equivalent Transplantation

In this class of patches, adaptation is required to apply the transformation into
the target system due to syntactic differences. For instance, when two programs
are semantically equivalent but syntactically different, the patch needs to be mod-
ified before transplanting into the recipient program. This requires a namespace
translation between Pb and Pc.

CVE-2013-4231 is an example of Class-III class, where the patch requires an
adaptation in terms of namespace translation. It occurs due to an buffer overflow
in Libtiff, a library for processing Tagged Image File Format files. A bug in one of
the library modules which processes GIF images causes an overflow which can be
fixed by inserting a check as shown in Figure 7.8b. Since the maximum LZW bits
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static void ReadImage(....) {
....
if(!ReadOK(fd, &c, 1)) {

return;
}

if (c > 12)
return;

....
}

(a) developer patch for LibGD 2.0.34 RC1

int readraster(void) {
....
datasize = getc(infile);
if (datasize > 12)

return 0;
clear = 1 << datasize;
eoi = clear + 1;

....
}

(b) developer patch for Libtiff 4.0.4

Figure 7.8: Example for Type III: CVE-2013-4231

allowed in GIF standard is 12, the patch for the overflow error involves inserting a
check condition. This vulnerability also exists in LibGD and ImageMagick libraries
which are also image processing software similar to Libtiff. All three programs are
vulnerable to the same exploit because they follow the same standard for GIF image
processing. The adaptation required for the patch is the namespace mapping from
datasize in Libtiff to c in LibGD and change of return type to match the function
return type (Figure 7.8a).

bool jas_image_cmpt_domains_same(jas_image_t *
image)

{
int cmptno;
jas_image_cmpt_t *cmpt;
jas_image_cmpt_t *cmpt0;
cmpt0 = image->cmpts_[0];
for(cmptno = 1;

cmptno < image->numcmpts_;
++cmptno){

cmpt = image->cmpts_[cmptno];
if (cmpt->tlx_ != cmpt0->tlx_ ||

cmpt->tly_ != cmpt0->tly_ ||
cmpt->hstep_ != cmpt0->hstep_ ||
cmpt->vstep_ != cmpt0->vstep_ ||
cmpt->width_ != cmpt0->width_ ||
cmpt->height_ != cmpt0->height_) {
return 0;

}}
return 1;
}

(a) Original function in Jasper 1.900.14

bool jas_image_cmpt_domains_same(
opj_tcd_tile_t *t)

{
int cmptno;
opj_tcd_tilecomp_t *cmpt;
opj_tcd_tilecomp_t *cmpt0;
cmpt0 = &t->comps[0];
for(cmptno = 1;

cmptno < t->numcomps;
++cmptno){

cmpt = &t->comps[cmptno];

if (cmpt->x0 != cmpt0->x0 ||
cmpt->y0 != cmpt0->y0 ||
cmpt->x1 != cmpt0->x1 ||
cmpt->y1 != cmpt0->y1) {
return 0;

}}
return 1;

}

(b) Adapted function for OpenJPEG 1.5.1

Figure 7.9: Example for Class-IV: CVE-2016-9389
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7.3.1.4 Class-IV : Semantically Equivalent Transplantation
with Dependency

For syntactically different yet semantically equal patch which requires a dependency
to be transplanted, are considered as Class-IV patches. The dependent component,
itself may require adaptation due to namespace differences between the donor Pb
and the recipient Pc. This requires a namespace translation between Pb and Pc and
data structure translation for the patch to work.

CVE-2016-9389 is an example for Class-IV, where the patch requires a depen-
dency to transplant the patch in the recipient program. CVE-2016-9389 is a buffer
overflow vulnerability in JasPer 1.900.13 version and fixed in 1.900.14 which allows
remote attackers to cause a denial of service attack. The same vulnerability also
exists in OpenJPEG 1.5.1, adapting the patch for OpenJPEG 1.5.1 requires map-
ping variables across different data structures, specifically mapping jas_image_t

to opj_tcd_tile_t and transplanting the missing function from JasPer to Open-
JPEG i.e. jas_image_cmpt_domains_same. Listing 7.9a and Listing 7.9b depict
the difference between the original function and manually adapted function used in
the patch.

7.4 Methodology
The goal of PatchWeave is to extract a patch from a given donor program and
insert into a target program by computing the patch location and adapting the
patch to the context of the target program. First, we will introduce the notations
that we will use throughout the rest of the chapter, and then we present an overview
of our approach and discuss in detail how each phase in our approach works. We
will make use of our motivational example presented earlier in Section 7.2 to guide
through each phase.

Symbols and Definitions Table 7.2 summarizes the notations used in this
chapter, where Pa is used to identify the donor program before the patch and
Pb identifies the donor program with the developer fix. Similarly, Pc is used to
identify the target program in which we aim to repair the bug and Pd denotes the
patched target program after the transplantation.

We now define a Divergent Point which identifies a location in the program which

142



Table 7.2: Annotations used in the Patch Transplantation Problem

Symbol Description
Pa the buggy version of the donor program
Pb the fixed version of the donor program
Pc the buggy version of the target program
Pd the fixed version of the target program
tF the test case that failed in Pa but passes in Pb
da a divergent point in Pa
dc a divergent point in Pc which is mapped to da
lc a buggy location in Pc where with an observable error
πFa the execution trace of tF in Pa
πFb the execution trace of tF in Pb
πFc the execution trace of tF in Pc

will be used to compute the insertion location for the transplantation. Figure 7.10
shows the divergent points with respect to the source code that differs for Pa, Pb,
Pc.

Definition 4 (Divergent Point). Given two traces πFa and πFb in Pa and Pb of a
failing input tF , the set of divergent points between πFa and πFb are the set of locations
where πFb starts deviating from πFa in terms of instructions executed.

Figure 7.10: Illustration of divergent points for Pa, Pb, Pc

We make use of a relation between two given path conditions πa and πb, to map
a divergent point from one program to another using the following definitions.

Definition 5 (Partial Path Condition). Given a trace πi of an input i in a program
P , and given a point l in the trace πi, the partial path condition of i in program P

at l, denoted ppc(P, i, l) is the path condition of πi up to and including l.
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For the patch transplantation problem that we investigate in this research, we
extract the patch from one program and transplant to another similar program
(Def 2). Due to the similarity of the two programs, an inherent property is following
a standard or a protocol in which the data processing order is the same. For
instance, the order of reading/processing input bytes from the input is more or less
the same. Making use of this inherent property, we define a relation ‘partial path
condition dominance’ to identify a mapping of program locations from Pa to Pc.

Definition 6 (Partial Path Condition Dominance). Given two partial path condi-
tions α and γ, we define partial path condition dominance for γ, denoted dom(γ, α),
if γ satisfies the condition where input bytes appearing in α are a subset of the input
bytes appearing in γ.

High-level Approach Figure 7.11 shows the overall workflow of PatchWeave.
Given Pa, Pb, Pc and tF , we first verify that two programs are similar programs as
stated in Definition 2. Then, PatchWeave transplants the patch from Pb to Pc in
five steps: patch extraction, patch localization, patch adaptation, patch enforcement
and patch verification as described in Algorithm 4.

Figure 7.11: The overall workflow for PatchWeave

First, during patch extraction (Lines 1-2 in Algorithm 4), PatchWeave takes as
input program Pa, program Pb and outputs the difference of the two programs in
two formats: textural difference and AST structural difference. A textual difference
(text_d) between the two programs provides a list of diff locations in terms of
source file paths and line numbers. We use information from the textual difference
to identify potentially changed locations which are relevant for the patch, and use
this information to generate the AST in a granular level instead of generating AST
for the complete program. Since the difference between the two programs may
contain modifications that are irrelevant for the bug fix, we use trace based filtering
to identify the correct patch from the difference of the two programs. In the initial
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steps in Algorithm 4, we preprocess the diff locations using the traces generated by
executing Pa, Pb and Pc for the failing test case tF . From the textual difference at
each diff location, we identify a code chunk which represents the textual difference
from Pa to Pb at the given diff location. Using GumTree, we obtain the AST
structural difference at each diff location from the two programs Pa and Pb which
captures the transformation from Pa to Pb with respect to its abstract syntax tree.
The objective of this phase is to correctly identify the patch which fixes the bug,
expressed in the form of an AST transformation script. Since the transformation of
the AST abstracts concrete identifiers and capture the difference at a fine-grained
level, PatchWeave could adapt the patch to different contexts.

Second, during patch localization (Lines 3-5 in Algorithm 4), PatchWeave com-
putes a patch location for the transplantation of the filtered patch. PatchWeave

divides the task of patch localization into two sub-tasks, (1) finding the patch func-
tion, and (2) finding the patch location within the identified function. At Line 3 in
Algorithm 4, the EstimateDivergentPoint method uses concolic execution [119]
to obtain the partial path conditions of Pa, Pb and Pc for the input tF to find a
divergent point in Pc (i.e. dc) similar to the divergent point observed in Pa (i.e.
da) with respect to the filtered patch. Once we identified a similar divergent point
in Pc, PatchWeave iterates over the trace of the target program Pc to find a patch
location. We locate the patch function using FindPatchFunction method, which
uses the estimated divergent location and the variables used in the code chunk to
search for a candidate patch function. First, it filters the functions invoked by Pc in
tracec starting from the estimated divergent point dc. Then, it finds the first func-
tion in the filtered list, which can be mapped to variables used in the code chunk
into variables used in the function. Similarly, FindPatchLoc method searches for a
patch location within the identified patch function using live analysis of the vari-
ables mapped by FindPatchFunction method. Finally, patch localization provides
the identified insertion location for the patch in terms of a target function and the
position within the target function to insert the patch, which also gives the con-
text information (i.e. variable mapping) required to translate the patch from the
namespace of Pa into the namespace of Pc.

In the patch adaptation phase (Line 6 in Algorithm 4), PatchWeave obtains a
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Algorithm 4: PatchWeave Algorithm
input : Buggy version of Donor Pa

Fixed version of Donor Pb
Buggy version of Target Pc
Failing test case tF

output: Fixed version of Target Pd or φ
tracea ← Trace(Pa, tF )
traceb ← Trace(Pb, tF )
tracec ← Trace(Pc, tF )
text_d← Diff(Pa, Pb)
text_d_filtered← FilterDiff(text_d, tracea, traceb)
text_d_filtered← text_d_filtered. reverse()
while text_d_filtered do

/* Patch Extraction */
1 da, code_chunk ← text_d_filtered. pop()
2 transformation_script← GumTree(code_chunk)

/* Patch Localization */
3 dc ← EstimateDivergentPoint(da, tracec)
4 candidate_function, var_map← FindPatchFunction(dc, tracec)
5 candidate_loc←

FindPatchLoc(candidate_function, var_map, transformation_script)
/* Patch Adaptation */

6 translated_script← TranslateScript
(transformation_script, da, dc)
/* Patch Enforcement */

7 Pd ← Transform(translated_script, var_map, candidate_loc)
end
if SyntaxCheck(Pd) then

return Pd
end
return φ
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translated patch for Pc. The first step of this phase is to obtain an AST transforma-
tion which can convert Pc into Pd. At this point, we have the AST transformation
script for Pa, and we have computed the target location for the insertion of the
patch. TranslateScript method in Line 6 uses an AST node matching algorithm
to obtain a mapping between the target function identified from patch localiza-
tion phase and the AST of Pa. Using this mapping we can translate the AST
transformation script into the context of the target program Pc. Second, using the
variable map computed earlier in patch localization phase we translate the concrete
identifiers (i.e., variable names and data structures) from Pb to Pc.

In patch enforcement (Line 7 in Algorithm 4), PatchWeave uses the mapping
of concrete identifiers and the adapted AST transformation to weave the patch
into the identified patch location in Pc. In this phase, dependency analysis is used
to locate and evolve the patch such that all required dependencies (i.e. header
files, macro definitions, etc) for the patch are transplanted such that the patch
is syntactically correct. Finally, after successful transplantation, we validate our
transplanted patch. Given the patched version of Pc, we call it Pd, we validate
Pd as follows. First, we use a syntax checker (SyntaxCheck(Pd) in Algorithm 4)
which performs static analysis on Pd with a set of syntax-rules to fix any found
plausible errors (i.e., unused variables, implicit conversion). Second, we recompile
the patched target application and check that the build is successful without any
syntactical errors. Third, we execute the patched application on the bug-triggering
input to verify that the patch has successfully eliminated the vulnerability for that
input. Finally, to check for the deviation of Pd’s behavior from Pc’s behavior, we
perform differential fuzz testing over 100 generated test cases using the input tF as
the seed.

7.4.1 Patch Extraction

PatchWeave uses trace based filtering to narrow down the changes from Pa to
Pb which only consist of code modifications relevant for the bug. The dynamic pro-
filer used by PatchWeave during trace collection is a modified version of KLEE [16].
PatchWeave executes the programs Pa and Pb in LLVM IR instructions with the
vulnerability triggering input tF until the buggy location is reached or the program
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crashes. The modified version of KLEE uses the debugging information in the pro-
gram to translate each instruction executed to a location in a source file. Using the
traces collected, combined with the textual difference obtained from the difference
of the two source codes of Pa and Pb, we filter the differences not witnessed in the
trace. The underlying assumption is that any modification required for the fix of
the bug should be executed in the patched version of the donor Pb. In essence, what
we extract as the patch is the necessary and sufficient modification required for the
fix.

The filtered patch can be viewed as a code difference composed of multiple code
chunks across different locations, each of which is a contiguous sequence of lines
corresponding to a sequence of insertions, deletions or both. Once we identified
the necessary code chunks required for the patch, we capture the modification as
a transformation of an abstract syntax tree. PatchWeave constructs an Abstract
Syntax Tree (AST) for the function that contains the identified chunk in both Pa and
Pb. Using a tree difference algorithm GumTree[34], we generate a transformation
script for the ASTs constructed earlier. This transformation script captures the
modifications of line insertion, deletion or both in the context of the AST. The set
of such transformations at each identified chunk is the output of this phase.

Figure 7.12: Patch extraction phase of PatchWeave

In our motivational example in Section 7.2, for the two versions of our donor
program JasPer, we obtained an AST script as depicted in Figure 7.12. Although
the original developer patch includes a statement replacement in line 1238 in Fig-
ure 7.5a, this statement is never executed for the input tF in the fixed version of
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JasPer. Hence, we filter this statement and only include the insertion of the variable
declaration and the if-condition which checks for the overflow.

7.4.2 Patch Localization

For each code chunk collected in the previous phase, the patch localization step aims
to search for the location in Pc to insert the respective code chunk. Algorithm 5
explains how PatchWeave estimates a similar location in Pc. The diff location of
each chunk is a divergent point in Pa since the execution of the tF in Pa and Pb start
to differ at this location. For each such divergent point da, we first calculate the
partial path condition of the failing input tF in Pa at da. This is the path condition
of the trace πFa of input tF in program Pa up to and including the divergent point.
We estimate a similar location in Pc using partial path condition dominance, on
the trace of input tF in program Pc. We map a divergent point da to the earliest
point dc in the execution trace of tF in program Pc which satisfies

dom(ppc(Pc, tF , dc), ppc(Pa, tF , da))

where dom is a dominance relation defined in Def. 6. Note that the two programs
although semantically similar may have different input verification, hence a superset
of the input bytes of da in Pc may not exist. For instance, in our motivational
example, the divergent point is at “libjasper/jpc/jpc_dec.c:1234” and the input
bytes appearing in the partial path condition at this points are shown below in
“input_bytes_a”. Similarly, OpenJPEG 1.5.1 input bytes appearing at the full
path condition are given below in “input_bytes_c”.
input_bytes_a = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 ,

19 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 62 , 63 , 64 ,
65 , 66 , 67 , 68 , 69 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 , 90 ,

93 , 94 , 95 , 96 , 97 , 98 , 99 , 100 , 109 , 110 , 111 , 112 , 113 , 114 , 115 , 116 , 117 ,
118 , 119 , 120 , 121 , 122 , 123 , 124 , 125 , 126 , 127 , 128 , 129 , 130 , 131 , 132 , 133 ,
134 , 135 , 136 , 137 , 138 ]

input_bytes_c = [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 ,
19 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 58 , 62 , 63 ,
64 , 65 , 66 , 67 , 68 , 69 , 70 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 , 86 , 87 , 88 ,

93 , 94 , 95 , 96 , 97 , 98 , 99 , 100 , 101 , 102 , 103 , 104 , 105 , 106 , 107 , 108 , 109 ,
110 , 111 , 112 , 113 , 114 , 115 , 116 , 117 , 118 , 119 , 120 , 121 , 122 , 123 , 124 , 125 ,
126 , 127 , 128 , 129 , 130 , 131 , 132 , 133 , 134 , 135 , 136 , 137 , 138 ]

149



Note that input bytes [89, 90] are missing in “input_bytes_c”, because Open-
JPEG 1.5.1 does not use these bytes at any control location. Hence, we need to
rule out any byte that does not appear in Pc before checking for the dominance
relation. Algorithm 5 explains how PatchWeave overcomes this issue by taking the
intersection of input bytes of the full path condition of Pc and the input bytes of
the partial path condition at divergent point da in Pa. Once the filtered input bytes
for the dominance relation is obtained, PatchWeave iterates through all control lo-
cations in Pc in a reverse order (i.e. starting from the last execution location) and
traverses until the dominance relation does not hold, which would give us the esti-
mated divergent location. We iterate in reverse order to be time efficient because
the patch location is much closer to the crash/buggy location.

Once we identify a location in Pc the patch can be inserted at any location
between dc and the crash location, in the execution trace of the failing test in Pc.
Note that there can be multiple divergent points due to multiple changes made
between Pa and Pb. Once a location dc is found for a given da, the adaptation of
the code chunk can be applied at any location visited between dc and the crashing
point (in the execution trace of tF in Pc). The search for this patch location consists
of two steps: (1) identifying patch function, and (2) finding the correct patch line
within the patch function. Given tF , our approach performs concolic execution on
the three programs (Pa, Pb and Pc) along the paths taken by tF .

7.4.2.1 Patch function

Algorithm 6 presents how PatchWeave finds the candidate patch function. The
insertion point is bounded between dc (divergent point) and lc (crash location),
a candidate function is any function invoked between dc and lc in the execution
trace of tF in Pc. In Algorithm 6, list_functions denotes all such functions executed
between dc and lc in the execution trace of tF in Pc. PatchWeave traverses through
each such function and generates symbolic expressions for the variables to find a
mapping between the variables in the code chunk at the divergent point da. Given
a function fc in Pc, our goal is to map each variable in the code chunk to variables
in function fc in Pc. Thus, for each variable in the code chunk, if a variable can be
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Algorithm 5: Estimating a divergent point (estimateDivLoc(d,p))
routine: getPartialPathCondition(p) takes a program location and outputs

the partial path condition
extractInputBytes(p) takes a partial path condition and outputs

the input bytes in the path condition
extractControlLocations(p) takes a program trace and outputs

control locations
input : a divergent point in Pa (da), execution trace of Pc for input

tF (πFc )
output : a location in Pc or φ

ppca ← getPartialPathCondition(da)
bytes_lista ← extractInputBytes(ppca)
listcontrol ← extractControlLocations(πFc )
locationend ← listcontrol.last()
ppcend ← getPartialPathCondition(locationend)
bytes_listend ← extractInputBytes(ppcend)
bytes_lista ← bytes_lista ∩ bytes_listend
/* Iterate through the control locations in Pc to find a

location which satisfies the dominance relation */

estimate_loc← φ
while listcontrol do

locationc ← listcontrol.pop()
ppcc ← getPartialPathCondition(locationc)
bytes_listc ← extractInputBytes(ppcc)
if bytes_lista v bytes_listc then

estimate_loc← locationc
else

return estimate_loc
end

end
return estimate_loc
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mapped to a variable in fc of Pc with the same symbolic expression4(getMap(l,f)
in Algorithm 6), we consider fc as a candidate patch function. In our motivational
example, function j2k_read_siz is our candidate insertion function since it is within
the range of the estimated divergent point and the crashing location, and it includes
variables that match the symbolic expressions of the variables in the code chunk
that we want to transplant.

Algorithm 6: Finding patch function (FindPatchFunction(dc, tracec))
routine: extractCode(p) takes a program location and outputs the program

statements at given location
estimateDivLoc(d,p) is the routine described in Algorithm 2
extractIdentifiers(c) takes a code chunk and output the list of

variable names
extractFunctions(d,p) takes a program location d, a trace p,

output the functions executed up to d
getMap(l,f) takes a list of variable names and a function, outputs if

variable mapping is possible
input : a divergent point in Pa (da), execution trace of Pc for input

tF (πFc )
output : a candidate function fc in Pc or φ

code_chunk ←extractCode(da)
dc ←estimateDivLoc(da, πFc )
list_identifiers← extractIdentifiers(code_chunk)
list_functions←extractFunctions(dc, πFc )
for function fc in list_functions do

if getMap(list_identifers, fc) then
return fc

end
end
return null

7.4.2.2 Patch Location

Computing the patch location has two variants based on the type of transformation
of the patch. If the original patch is modifying an existing statement in Pa, then the
objective is to find a similar statement in Pc. However, if the patch is introducing

4These symbolic expressions are calculated by the concolic execution of tF in programs Pb and
Pc.
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new statements, the patch line will be determined by the liveness property of the
variables required for the patch, i.e., the patch line should be a line at which all
variables required for the patch holds a value. We identify the line where the
transformation of the patch needs to be inserted based on the mapping of the
variables in the patch in Pb and to variables in the patch function in Pc. Let the
variables appearing in patch be Varsab and let them be mapped to variables Varsc in
Pc in the previous step of identifying the patch function. Recall that the mapping
of Varsab to Varsc was achieved by (1) concolic execution of input tF in Pb and
Pc, and then (2) mapping variables based on which variables in Pc have the same
symbolic expressions as the symbolic expressions of variables Varsab in program Pb.
Given a patch function fc in Pc, we filter out all control locations in fc where the
variables Varsc are not live. Moreover, if the patch function is on the stacktrace
when the crash occurs in Pc when executing tF , we can further narrow down the
patch locations to all locations in fc executed. For any selected candidate patch
location in function fc, we check if Varsab in the patch possess the same symbolic
expressions as the variables Varsc at the patch location.

7.4.3 Patch Adaptation

The patch adaptation phase processes the translation of the AST transformation
script obtained from the patch extraction phase and translates the concrete identi-
fiers to the namespace at the insertion location identified from the patch localization
phase. PatchWeave first translates the AST transformation script into the context
at the insertion location. For each code chunk identified for transplantation at
the extraction phase, PatchWeave obtains the corresponding AST transformation.
Translating the transformation script to the context of Pc involves three steps: node
translation, position translation and namespace translation. First, we present the
structure of a transformation step in the transformation script as follows:

• Delete NodeA: Delete node NodeA from ASTa

• Insert NewNode into NodeB at k: Inserts the node NewNode as the
k − th child of node NodeB in ASTb
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• Move NodeA into NodeB at k: Moves the node NodeA in ASTa to be the
k-th child of node NodeB in ASTb

• Update NodeA to NodeB: Replace the label in node NodeA with the label
of node NodeB

• Update and Move NodeA into NodeB at k: First update the label of
node NodeA from the matching node and then move node NodeA to the k-th
position of node NodeB

For instance, in our motivational example in Figure 7.12, one of the trans-
formation action is “Insert IfStmt(8271) into CompoundStmt(8077) at 24”, which
describes as inserting the node of type “IfStmt” identified by the id 8271 in Pb, into
the node of type “CompoundStmt” identified by the id 8077 in Pb.

7.4.3.1 Node Translation

Given a transformation of an AST node in Pa into a AST node in Pb, we want to
replace the node with a node in Pc and apply the same transformation. For this
purpose, we use the tree differencing algorithm GumTree[34] implementation on
LLVM AST. GumTree maps nodes in the two input ASTs based on certain heuris-
tics [34]. It outputs a set of mapped nodes denoted as (X, Y ) = (X1, Y1), ..., (Xi, Yi)
where X = X1, .., Xi and Y = Y1, .., Yi are the mapped nodes in the two ASTs and
‘i’ is the number of mapped nodes. We use this technique to generate a mapping
between Pa and Pc. Specifically, we generate the AST of the function which con-
tains the AST node of Pa, and the AST of the candidate function in Pc identified
in the previous phase. Once we obtain the mapping of nodes in the ASTs of Pa and
Pc, PatchWeave uses this mapping to translate the transformation script obtained
in the extraction phase.

Figure 7.13 shows the AST nodes translation using our motivational example.
The arrows indicate a mapping identified by GumTree from one AST to another.
To translate the transformation operation into Pc, we first translate the operation
into the context of Pa and then translate back from Pa into Pc. In Figure 7.13,
node 6 and 8 in the AST of JasPer 1.900.13 is mapped to the nodes 6 and 7 in the
AST of JasPer 1.900.12 respectively. Similarly, node 6 and 7 in the AST of JasPer
1.900.12 is mapped to the nodes 5 and 6 in AST of OpenJPEG 1.5.1. Thus, giving
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Figure 7.13: AST Node Mapping in Patch Adaptation Phase

us the translation of node 6 and 8 from AST of JasPer 1.900.13 into node 5 and 6
in OpenJPEG 1.5.1 respectively.

Let us consider in our motivational example where we transplant an “if” state-
ment from Pb into Pc. Figure 7.13 shows the translation of the AST nodes. The
diagram depicts the node translation for the transformation operation of “Insert
IfStmt(8271) into CompoundStmt(8077) at 24” discussed earlier. The green node
in Figure 7.13 represents the “IfStmt” node which need to be inserted while the
yellow nodes represent the “CompoundStmt” nodes in all three programs. First, we
map the “CompoundStmt(8077)” node from Pb into the “CompoundStmt(8077)”
node in Pa, and then “CompoundStmt(8077)” node from Pa into the “Compound-
Stmt(3886)” node in Pc as shown in Figure 7.13. At this point of the adaptation,
the transformation operation is “Insert IfStmt(8271) into CompoundStmt(3886) at
X”. Next, we adjust the position of the transformation related to the translated
AST node “CompoundStmt(3886)” in Pc.

7.4.3.2 Position Translation

Given a translation of nodes for the transformation action, we convert the position
relative to the translated AST node. For example, some transformations such as
INSERT, MOVE requires a position attribute which describes a position relative
to the target node in which the transformation would take place. PatchWeave uses
the patch location identified in previous phase to identify the target AST position
by translating the patch location into a relative AST node position.
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7.4.3.3 Namespace Translation

To translate the namespace of patch from Pb into Pc, the first step is to generate
a mapping between the variables in the patch and Pc. For each variable in the
patch, PatchWeave finds the corresponding variable in Pc despite the difference in
data structures. As a single variable could have multiple instances due to different
invocations, PatchWeave keeps track of all such instances to identify any instance of
a variable in Pc that matches with a variable in the patch. For each such instance,
PatchWeave records the bit value of KLEE [16], the symbolic expression and the
variable name. PatchWeave is relying on the data-type agnostic representation of
KLEE to translate values across different data-structures. (i.e. same numeric input
represented in a signed integer value and unsigned integer differ). For each variable
v in the patch, PatchWeave lists variables u from Pc where any instance of the
variable u is equal to the bit value of the given variable v. PatchWeave then filters
the variables using equivalence of symbolic expressions of v and u, which guarantees
that the two variables are not only equal in terms of the value computed but also
in terms of symbolic expressions. For any given variable v in the patch, if there
are several variables in Pc having the same bit value and symbolic expression as v,
PatchWeave selects the variable whose name has the minimum Levenshtein distance
with the name of variable v (e.g., if array[i] is matched against temp and arr[j],
PatchWeave selects arr[j] due to the minimum Levenshtein distance).

7.4.4 Patch Enforcement

Once the translation of the variables in the patch into the namespace of Pc is
complete, we obtain the translated patch. Although the patch has been translated
successfully, we still need to identify and transplant any missing definitions used in
the patch, such as a function specific for Pa or any macro definition only defined
in Pa. The final step of the transplantation is to analyze each AST node in Pc to
identify such missing definitions and ensure that the relevant missing functions can
be called from within Pc at the insertion point. For example, if the patch is using
a function defined in an external library which is not used in Pc, PatchWeave would
include the relevant header files automatically so that the library can be called
from Pc. In the case where a custom function defined in Pa is used in the patch,
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PatchWeave translates the function to match the namespace of Pc as shown in our
motivational example.

7.5 Implementation
We have implemented PatchWeave in Python 2.7, in combination with Clang 7.1 [140]
and KLEE 1.4 [16]. Clang is used for compiling the AST’s and obtaining the LLVM
IR for symbolic execution in KLEE. We extend KLEE to support concolic execution
for C/C++ programs. We leverage Z3 [142] SMT solver for equivalence checking
and LibTooling to enforce the textual edits and for source code instrumentation
required in symbolic analysis.

We use the clang AST because it offers source-to-source transformation for
C/C++ code and the C++ standard. For example, parenthesis expressions and
compile time constants are available in an unreduced form in the AST. This makes
Clang’s AST a good fit for refactoring tools such as ours. Since we use a compiled
AST contrast to a static AST built from the source code, the AST is lightweight
but also does not include pragmas which is commonly used in software to produce
different code for different environments. For our analysis, we do not require such
level of details since we only repair the bug for the vulnerability observed in one
environment.

PatchWeave is implemented with 6394 lines of Python code and 4164 lines of
C/C++ code not including the modified KLEE used for symbolic analysis.

7.6 Evaluation
First, we evaluate the efficacy of PatchWeave on eight real world applications
to transplant fixes for vulnerabilities reported in the CVE database and recur-
ring bugs [106] discovered in our experiments, where each subject is a tuple of
(donor program, target program, detected error). In terms of the problem formu-
lation shown in Figure 7.1, donor program corresponds to Pb, target program cor-
responds to Pc, and detected error corresponds to the failing input tF . Thus, a
patch from Pb is transplanted into Pc. Second, we evaluate the quality of the
transplanted patch using differential fuzzing and manually examine the patches for
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correctness and compare them to the developer fix (if any exist). Third, we compare
PatchWeave against state of the art APR tools including F1X [89] and Prophet [79].
Next, we provide our comparison effort with feature transplantation tools and the
results. Last, we compare against a syntactic approach for transplantation, namely
LASE [93]. Our evaluation aims to address the following research questions:

RQ1 How effective is PatchWeave on real-world programs?

RQ2 Can we localize the correct function for transplantation using our patch lo-
calization algorithm?

RQ3 What is the quality of the transplanted code?

RQ4 How effective is our approach compared to Automated Program Repair (APR)
tools?

RQ5 How effective is our approach compared to existing transplantation tech-
niques?

RQ6 How effective is a semantic transplantation technique compared with syntac-
tic transplantation techniques?

7.6.1 Experimental Setup

We evaluate PatchWeave on five classes of errors, including integer overflow, di-
vision by zero, null pointer dereference, buffer overflow and memory errors. We
obtain our subjects from a public repository [2] that contains exploits and steps
to reproduce vulnerabilities published in the CVE database. To evaluate the patch
transplantation ability of PatchWeave, we studied the transplantation of patches on
one application program processing an input format to another application program
exercising similar functionality on the same input format. We select subjects based
on two criteria: (1) they have exploits reported in the referenced public reposi-
tory [2], and (2) they should be popular C and C++ open-source programs which
have been cited in literature [1, 67]. Table 7.3 shows the summary of each selected
subject, together with a short description about the functionality of the subject,
lines of code (LOC), the range of the program versions and the number of versions
we evaluated.
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Table 7.3: Experiment subjects used in PatchWeave evaluation

Name Description LOC Version Range Count
JasPer Image manipulations 26k 1.900.2 - 2.0.14 44
OpenJPEG JPEG 2000 image manipulations 200k 1.4 - 2.1.1 8
LibWebP WebP image manipulations 67k 0.1.2 - 1.0.2 14
LibTIFF TIFF images processing 70k 4.0.0 - 4.0.9 10
LibMing SWF processing 66k 0.4.3 - 0.4.8 6
Libsndfile Audio manipulation 52k 1.0.25 - 1.0.28 4
Libzip ZIP archive processor 13k 1.0.0 - 1.5.2 14
WavPack Lossless Wave file compressor 33k 4.40.0 - 5.1.0 12

For our experiments, we select vulnerabilities and their corresponding exploits
from reported issues in the projects listed in Table 7.3 using the following criteria:
(1) the vulnerability should be exploitable and its report includes a proof of exploit,
(2) the vulnerability should be fixed and verified by the developer, and (3) the
vulnerability should be reported in the CVE database between 2016-2018. For
each vulnerability collected, we run against each of the subjects (each version of
each program listed in Table 7.3) to find any similar vulnerability exhibiting in a
different program other than the one it was reported on. Any two pairs that exhibit
similar vulnerability (Def 1) are considered for evaluation under two criteria. 1) if
the two programs are not from the same project, we select the latest version of the
target project in the range we presented in Table 7.3 or 2) if both programs are
from the same project, it implies a backporting pair. For backporting, we select
the oldest version in the range we presented in Table 7.3 which exhibits the same
vulnerability. We further filtered commits which did not compile as we cannot
verify if the vulnerability has been fixed for the exploit. Note that the exploits
we collected can trigger vulnerabilities that are common to two different programs
which are not relevant for the original program it was reported with. For example,
an exploit which was reported with OpenJPEG, could trigger a vulnerability which
is common to Jasper and Libtiff.

All experiments are conducted on a Dell PowerEdgeR530 with Intel(R) Xeon(R)
CPU E5-2660 processor and 64GB RAM. We use Docker [141] containers to exploit
and repair the vulnerable applications.
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7.6.2 Experimental Results

7.6.2.1 Efficacy of PatchWeave

We select a set of real-world applications and CVE bug reports as described in Sec-
tion 7.6.1 and run PatchWeave to transplant patches from the donor program to the
target program, in the identified pair list. We validate the efficacy of PatchWeave
by comparing our results to developer patches (if any exist) for the bugs as the
ground truth. We extract the developer patches from the bug reports or the com-
mits provided by the developers. Table 7.4 presents the results of our experiments.
The “Bug ID” column specifies an identifier of the bug if the bug has been reported.
If the bug has been reported in CVE we indicate the CVE identifier or if the bug
has been reported in the project bug tracker, we indicate the bug identifier. Some
bugs have been fixed without being reported hence may not have a bug ID, which
is indicated by ‘N/A’. The “Exploit ID” column indicates the CVE where we ob-
tained the exploits / test cases (tF ). The “Donor” column specifies the program
name and version of the donor, while the “Target” column shows the same infor-
mation for the target program. The “Target Location” column indicates the source
code location in the target program that contains the vulnerability. The “Error”
column specifies the type of vulnerability. The “Patch Commit” column represents
the commit id for the patch in the donor program and “Patch Class” shows the
classes of patches defined in Section 7.3. The “Time (min)” column shows the total
time taken in minutes for PatchWeave to fix the error/vulnerability by transferring
the patch, starting from patch extraction to patch verification or 7 to indicate the
patch transplantation was unsuccessful.

The “Diff. Fuzz.” column denotes the results of differential fuzz testing in the
form x/y, where x is the number of test cases where Pc results in a crash and Pd
gracefully exits; similarly y is the number of test case where Pd crashes or produce
a different output than Pc. The “Patch Size” column denotes the modified lines
of code in the transferred patch (e.g., if an expression within an if-statement is
modified, we consider “Patch Size”=1). The “Function Hops” column is a measure
of efficiency in finding the patch function, (e.g., “Function Hops” = 1 means that
we find the patch function at the first iteration of the loop in Algorithm 6). The
“Patch Similarity” column denotes the patch quality of PatchWeave relative to
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Table 7.4: Summary of PatchWeave experiment results

ID Bug ID Exploit ID Donor Target Target
Location Error Patch

Commit
Patch
Class

Time
(min)

Diff.
Fuzz.

Patch
Size

Function
Hops

Patch
Similarity

1 Bug-169 CVE-2016-8691 JasPer-1.900.3 OpenJPEG-1.5.1 int.h@87 DZ d8c2604 III 5.0 37/0 3 1 C2
2 CVE-2016-8691 CVE-2016-8691 OpenJPEG-1.5.2 JasPer-1.900.2 jpc_dec.c@1194 DZ e55d5e2 III 8.0 22/0 3 4 C2
3 N/A CVE-2016-9387 JasPer-1.900.13 OpenJPEG-1.5.1 j2k.c@560 IO d91198a IV 7.5 5/0 27 1 C2
4 CVE-2016-9387 CVE-2016-9387 OpenJPEG-1.5.2 JasPer-1.900.12 jpc_dec.c@1234 IO 6e0162a III 8.5 42/0 3 1 C2
5 Bug-155 CVE-2017-6850 JasPer-2.0.12 OpenJPEG-1.5.1 cio.c@146 NPD 7692d6d III 7 -/- - - -
6 CVE-2016-6850 CVE-2017-6850 OpenJPEG-1.5.2 JasPer-1.900.30 jas_malloc.c@111 NPD 7720188 III 15.0 9/0 4 1 C2
7 N/A CVE-2016-8692 JasPer-1.900.3 OpenJPEG-1.3 int.h@87 DZ 3c55b39 III 3.5 52/0 3 1 C2
8 CVE-2016-8692 CVE-2016-8692 OpenJPEG-1.4 JasPer-1.900.2 jpc_dec.c@1196 DZ f4d394d III 5.5 20/0 3 4 C2
9 N/A CVE-2016-9387 JasPer-1.900.14 OpenJPEG-2.1.0 j2k.c@2099 UIO ba2b9d00 III 6.0 42/0 4 1 C2
10 N/A CVE-2016-9387 OpenJPEG-2.1.1 JasPer-1.900.13 jpc_dec.c@1244 UIO 58fc8645 III 18.0 46/0 13 2 C2
11 Bug-312 CVE-2016-9262 OpenJPEG-1.5.1 LibWebP@0.3.0 jpegdec.c@251 SIO 6280b5ad III 2.5 90/0 4 1 C2
12 N/A CVE-2016-9830 JasPer-1.900.4 LibWebP@0.2.0 cwebp.c@120 ShO 6109f6a II 5.0 99/0 2 1 C1
13 N/A CVE-2016-9830 LibWebP@0.3.0 JasPer-1.900.3 mif_cod.c@394 ShO 7a650c6a I 11.0 98/0 1 13 C1
14 CVE-2016-9390 CVE-2016-9390 OpenJPEG-1.5.2 JasPer-1.900.13 jpcmct.c@151 HBO 69cd4f9 III 7 -/- - - -
15 Bug-297 CVE-2016-9390 JasPer-1.900.14 OpenJPEG-2.1.0 libopenjpeg/mct.c@84 HBO dee11ec IV 7 -/- - - -
16 CVE-2016-9393 CVE-2016-9393 JasPer-1.900.17 OpenJPEG-1.5.2 j2k.c@447 UIO f7038068 III 12.0 42/0 3 1 N.A.
17 CVE-2016-8884 CVE-2016-8884 LibTiff-3.8.0 Jasper-1.900.8 bmp_dec.c@394 MWE 50373d7d III 26.0 18/0 8 23 C2
18 N/A CVE-2017-6828 Libsndfile-1.0.26 WavPack-5.1.0 common.c@992 ShO 3e91aaf7 III 7 -/- - - -
19 CVE-2016-9387 CVE-2016-9387 Jasper-1.900.13 Jasper-1.900.2 jpc_dec.c@1206 IO d91198a II 8.0 34/0 29 1 C1
20 CVE-2016-9265 CVE-2016-9265 LibMing-0.4.8 LibMing-0.4.6 listmp3.c@187 DZ b0704f80 I 5.5 98/0 2 1 C1
21 CVE-2016-9266 CVE-2016-9266 LibMing-0.4.8 LibMing-0.4.6 listmp3.c@94 NS 2e5a98a0 I 5.5 29/0 17 1 C1
22 Bugzilla-2634 CVE-2017-14039 LibTiff-4.0.8 LibTiff-4.0.0 tiff2ps.c@2443 HBO 5ed9fea5 I 26.0 75/0 5 18 C1
23 CVE-2017-8365 CVE-2017-8365 Libsndfile-master Libsndfile-1.0.26 src/pcm.c@670 GBO fd0484ab I 16.0 73/0 9 3 C1
24 CVE-2017-14107 CVE-2017-14107 Libzip-1.3.0 Libzip-1.1.2 zip_dirent.c@108 MAF 9b46957e I 42.0 90/0 4 13 C1

Division By Zero Error {DZ - Divide by Zero}, Integer Overflow {IO - Integer Overflow, UIO - Unsigned Integer Overflow, SIO - Signed Integer Overflow},
Memory Error {NPD - Null Pointer Dereference, MAF - Memory Allocation Failure, MWE - Memory Write Error}, Shift Overflow {ShO - Shift Overflow, NS -

Negative Shift}, Buffer Overflow {HBO - Heap Buffer Overflow, GBO - Global Buffer Overflow}



human-written patches (defined in Section 7.6.2.3).

Overall, PatchWeave has successfully fixed the errors for all evaluated pairs
via patch transplantation, except for four errors. PatchWeave fails to fix ID 5
in Table 7.4 because the patch for JasPer includes program-specific changes that
cannot be translated to OpenJPEG as intended. Specifically, the changes involve
refactoring of existing functions and modifications to internal function calls, which
are irrelevant for the bug-fix. Similarly, the developer patch in ID 18 contains
changes for multiple bug fixes so our approach fails to extract the specific patch for
the bug. In ID 14 and 15 of Table 7.4, the transplantation was unsuccessful due to
the higher number of iterations executed within the execution of tF which produced
a large symbolic path condition in which checking of partial path conditions became
computationally infeasible.

Artifact and Tool Release Experiment results in the form of generated patches
and developer patches are publicly available at our website5. Other experimen-
tal data is publicly available at Docker Hub via docker image rshariffdeen/patch-
weave:experiments. Meanwhile, our tool is publicly available on Github6.

7.6.2.2 Effectiveness of patch localization

We evaluate the effectiveness of the patch localization technique in PatchWeave

(i.e. partial path condition dominance relations defined in Definition 6). Table 7.5
summarizes the efficacy of PatchWeave for patch localization. The “Donor” column
specifies the program name and version of the donor, while the “Target” column
shows the same information for the target program. The “Error” column specifies
the type of vulnerability and “Patch Class” shows the classes of patches defined in
Section 7.3. The “Time (min)” column shows the total time taken in minutes for
PatchWeave to fix the error/vulnerability by transferring the patch, starting from
patch extraction to patch verification or 7 to indicate the patch transplantation was
unsuccessful.

“In Top-3?” column and “In Top-5?” column indicate if the patch function has
been located after localization within 3 hops and 5 hops respectively. The “Localized

5https://patchweave.github.io/
6https://github.com/rshariffdeen/PatchWeave
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Function Hops” column indicates the absolute measure of efficiency in finding the
patch function (same as “Function Hops” column in Table 7.4). Similarly, “Non-
Localized Function Hops” column indicates the number of hops required to iterate
in order to find the identified patch function without patch localization. “Filter
Count” represents the number of functions filtered from the search space using patch
localization and “Reduction Ratio” represents the efficiency of the patch localization
in terms of the number of hops saved as a percentage of the total number of hops
without patch localization. The percentage is calculated in the form x/y, where
“x” is the number of functions filtered and “y” is the total number of function hops
required when not using patch localization.

PatchWeave successfully locates the patch function for 20 test-cases presented
in Table 7.5 among these 11 instances are the first candidate function, and 13 hits
the Top-3 selection and 15 hits the Top-5 selection.

PatchWeave can correctly identify the insertion points for all patches trans-
planted for all evaluated (donor, target) pairs. In general, there could be several
potential insertion points for a given patch, our algorithm has successfully identified
one of these insertion points. On average, our approach requires six iterations to
find the insertion points for all evaluated patches (“Function Hops” column in Ta-
ble 7.4 and “Localized Function Hops” column in Table 7.5). As our approach can
automatically identify all insertion points within a reasonable number of iterations,
this serves as evidence for the effectiveness of our localization algorithm using the
partial path condition dominance relationship.

7.6.2.3 Quality and diversity of patches

Given a developer-written patch Patchdev, an automatically transplanted patch
Patchauto, we measure patch quality using the criteria:

(C1) Syntactically Equivalent. Patchauto is “Syntactically Equivalent” if Patchauto

and Patchdev are syntactically the same.

(C2) Semantically Equivalent. Patchauto is “Semantically Equivalent” if Patchauto

and Patchdev are not syntactically the same but could be refactored to produce the
same semantic behavior.
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Table 7.5: Effectiveness of patch localization in PatchWeave

ID Donor Target Error Patch
Class

Time
(min)

In
Top-3?

In
Top-5?

Localized
Function Hops

Non-Localized
Function Hops

Filter
Count

Reduction
Ratio

1 JasPer-1.900.3 OpenJPEG-1.5.1 DZ III 5.0 3 3 1 18 17 17/17 = 100%
2 OpenJPEG-1.5.2 JasPer-1.900.2 DZ III 8.0 7 3 4 65 61 61/64 = 95%
3 JasPer-1.900.13 OpenJPEG-1.5.1 IO IV 7.5 3 3 1 34 33 33/33 = 100%
4 OpenJPEG-1.5.2 JasPer-1.900.12 IO III 8.5 3 3 1 82 81 81/81 = 100%
5 JasPer-2.0.12 OpenJPEG-1.5.1 NPD III 7 - - - - - -
6 OpenJPEG-1.5.2 JasPer-1.900.30 NPD III 15.0 3 3 1 33 32 32/32 = 100%
7 JasPer-1.900.3 OpenJPEG-1.3 DZ III 3.5 3 3 1 18 17 17/17 = 100%
8 OpenJPEG-1.4 JasPer-1.900.2 DZ III 5.5 7 3 4 65 61 61/64 = 95%
9 JasPer-1.900.14 OpenJPEG-2.1.0 UIO III 6.0 3 3 1 57 56 56/56 = 100%
10 OpenJPEG-2.1.1 JasPer-1.900.13 UIO III 18.0 3 3 2 70 68 68/69 = 98%
11 OpenJPEG-1.5.1 LibWebP@0.3.0 SIO III 2.5 3 3 1 82 81 81/81 = 100%
12 JasPer-1.900.4 LibWebP@0.2.0 ShO II 5.0 3 3 1 7 6 6/6 = 100%
13 LibWebP@0.3.0 JasPer-1.900.3 ShO I 11.0 7 7 13 13 0 0/12 = 0%
14 OpenJPEG-1.5.2 JasPer-1.900.13 HBO III 7 - - - - - -
15 JasPer-1.900.14 OpenJPEG-2.1.0 HBO IV 7 - - - - - -
16 JasPer-1.900.17 OpenJPEG-1.5.2 UIO III 12.0 7 7 1 34 33 33/33 = 100%
17 LibTiff-3.8.0 Jasper-1.900.8 MWE III 26.0 7 7 23 46 23 23/45 = 51%
18 Libsndfile-1.0.26 WavPack-5.1.0 ShO III 7 - - - - - -
19 Jasper-1.900.13 Jasper-1.900.2 IO II 8.0 3 3 1 79 78 78/78 = 100%
20 LibMing-0.4.8 LibMing-0.4.6 DZ I 5.5 3 3 1 2 1 1/1 = 100%
21 LibMing-0.4.8 LibMing-0.4.6 NS I 5.5 3 3 1 2 1 1/1 = 100%
22 LibTiff-4.0.8 LibTiff-4.0.0 HBO I 26.0 7 7 18 76 58 58/75 = 77%
23 Libsndfile-master Libsndfile-1.0.26 GBO I 16.0 3 3 3 17 14 14/16=87.5%
24 Libzip-1.3.0 Libzip-1.1.2 MAF I 42.0 7 7 13 25 12 12/24 = 50%

Division By Zero Error {DZ - Divide by Zero}, Integer Overflow {IO - Integer Overflow, UIO - Unsigned Integer Overflow, SIO - Signed Integer Overflow},
Memory Error {NPD - Null Pointer Dereference, MAF - Memory Allocation Failure, MWE - Memory Write Error}, Shift Overflow {ShO - Shift Overflow, NS -

Negative Shift}, Buffer Overflow {HBO - Heap Buffer Overflow, GBO - Global Buffer Overflow}



Table 7.4 shows that our approach could successfully generate patches of com-
parable quality to the developer-written patches (i.e., eight generated patches are
“Syntactically Equivalent” and 11 are “Semantically Equivalent”). We attribute
the success of PatchWeave in generating patches that are of comparable quality
to developer-written patches to the code reuse advocated by our approach in the
form of patches. The “Patch Size” column in Table 7.4 indicates that our approach
is effective in transplanting compact patches (i.e., they are all expressible within
1–29 lines of code). Meanwhile, the “Diff. Fuzz.” column shows that all of the
transplanted patches have been validated through differential fuzzing.

In terms of the patch types covered, the “Patch Type” column shows that
PatchWeave could successfully transplant patches for all types of patches defined in
Table 7.1. In terms of the class of errors covered, the “Error” column shows that
PatchWeave could successfully transplant patches for all evaluated five classes of
vulnerabilities, namely: buffer overflow, integer overflow, divide-by-zero, memory
errors (including null pointer dereferences) and shift overflows.

7.6.2.4 Comparison with APR

Although not directly comparable, automated program repair can be used to di-
rectly repair program bugs instead of transplanting from a different program. Hence,
we compare our technique with two state-of-the-art program repair techniques to
show how transplantation addresses the limitations of program repair (i.e. bounded
search space, overfitting problem). Comparison results are shown in Table 7.6. The
“Time” column shows the total time taken in minutes for each tool to fix the er-
ror/vulnerability, or 7 to indicate the repair was unsuccessful. The “Fuzz” column
denotes the results of differential fuzz testing in the form x/y, where x is the number
of test cases where Pc results in a crash and Pd gracefully exits; similarly y is the
number of test case where Pd crashes or produce a different output than Pc.

F1X [89]: We evaluate our benchmark with F1X, one of the latest semantic-
based automated program repair tool for C programs; the authors of [89] provided
us access to the tool at our email request. We choose to evaluate on F1X because it
represents a state-of-the-art program repair tool which has been shown in prior work
to be more efficient and effective than several search based and semantic program
repair tools. F1X uses test-equivalence relations to partition patch candidates,
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Table 7.6: PatchWeave comparison with program repair techniques

ID Donor Target Error Patch
Class F1X Prophet

Time Fuzz Time Fuzz Time Fuzz
1 JasPer-1.900.3 OpenJPEG-1.5.1 DZ Class-III 5.0 37/0 0.16 20/13 10 69/2
2 OpenJPEG-1.5.2 JasPer-1.900.2 DZ Class-III 8.0 22/0 1.5 24/0 3.5 23/0
3 JasPer-1.900.13 OpenJPEG-1.5.1 IO Class-IV 7.5 5/0 0.33 52/0 2 38/7
4 OpenJPEG-1.5.2 JasPer-1.900.12 IO Class-III 8.5 42/0 6 14/27 2 0/41
5 JasPer-2.0.12 OpenJPEG-1.5.1 NPD Class-III 7 -/- 0.16 11/3 7 -/-
6 OpenJPEG-1.5.2 JasPer-1.900.30 NPD Class-III 15.0 9/0 0.5 8/0 3 0/9
7 JasPer-1.900.3 OpenJPEG-1.3 DZ Class-III 3.5 52/0 0.25 30/29 1 1/69
8 OpenJPEG-1.4 JasPer-1.900.2 DZ Class-III 5.5 20/0 1.5 33/0 3.5 20/0
9 JasPer-1.900.14 OpenJPEG-2.1.0 UIO Class-III 6.0 42/0 0.67 37/49 7 -/-

10 OpenJPEG-2.1.1 JasPer-1.900.13 UIO Class-III 18.0 46/0 6 35/7 7 -/-
11 OpenJPEG-1.5.1 LibWebP@0.3.0 SIO Class-III 2.5 90/0 7 -/- 3 41/0
12 JasPer-1.900.4 LibWebP@0.2.0 ShO Class-II 5.0 99/0 0.25 38/0 7 -/-
13 LibWebP@0.3.0 JasPer-1.900.3 ShO Class-I 11.0 98/0 0.5 93/4 7 -/-
14 OpenJPEG-1.5.2 JasPer-1.900.13 HBO Class-III 7 -/- 7 -/- 7 -/-
15 JasPer-1.900.14 OpenJPEG-2.1.0 HBO Class-IV 7 -/- 7 -/- 7 -/-
16 JasPer-1.900.17 OpenJPEG-1.5.2 UIO Class-III 12.0 42/0 1 44/9 1 0/69
17 LibTiff-3.8.0 Jasper-1.900.8 MWE Class-III 26.0 18/0 0.33 15/0 7 -/-
18 Libsndfile-1.0.26 WavPack-5.1.0 ShO Class-III 7 -/- 7 -/- 7 -/-
19 Jasper-1.900.13 Jasper-1.900.2 IO Class-II 8.0 34/0 7.5 13/26 2 0/42
20 LibMing-0.4.8 LibMing-0.4.6 DZ Class-I 5.5 98/0 0.33 100/0 2 0 /42
21 LibMing-0.4.8 LibMing-0.4.6 NS Class-I 5.5 29/0 0.33 100/0 6 94/6
22 LibTiff-4.0.8 LibTiff-4.0.0 HBO Class-I 26.0 75/0 0.33 0/100 7 -/-
23 Libsndfile-master Libsndfile-1.0.26 GBO Class-I 16.0 73/0 1 66/2 7 -/-
24 Libzip-1.3.0 Libzip-1.1.2 MAF Class-I 42.0 90/0 7 -/- 7 -/-

Total 24 20 20 19 8 12 3

Division By Zero Error {DZ - Divide by Zero}, Integer Overflow {IO - Integer Overflow, UIO - Unsigned Integer Overflow, SIO - Signed Integer Overflow},
Memory Error {NPD - Null Pointer Dereference, MAF - Memory Allocation Failure, MWE - Memory Write Error}, Shift Overflow {ShO - Shift Overflow, NS -

Negative Shift}, Buffer Overflow {HBO - Heap Buffer Overflow, GBO - Global Buffer Overflow}



which leads to significant improvement of the patch generation time without sac-
rificing patch quality. However, F1X, like most existing repair tools, may suffer
from the overfitting problem, where a generated patch may be plausible (passing
all given tests), but overfitting (fails for tests outside the given tests). For each
vulnerability (each row of Table 7.4), we created a test suite Tm which includes the
failing test case and a passing (non-crashing) test case. Then, we give Tm and the
fix location to F1X for patch generation. In summary, F1X was able to fix 19 bugs
out of 24, but only eight out of the 19 fixes are not overfitting (as shown in rows
with x/0 in the “Fuzz” column in Table 7.6). Effectively, only eight bugs have been
successfully repaired by F1X.

Prophet [79]: We also evaluate our benchmark with Prophet, one of the popu-
lar search-based automated repair tools; We choose to evaluate on Prophet because
it represents a state-of-the-art program repair tool which has been shown in [79]
to be more efficient and effective than other search based tools. Prophet uses a
probabilistic, application-independent model generated from a collection of human
written patches, to find the correct code. We run Prophet using the default config-
uration (with the pre-trained model and enabled the condition-ext option and the
replace-ext option). For each vulnerability (each row of Table 7.4), we created a
test suite Tm which includes the failing test case and a passing (non-crashing) test
case. Then, we give Tm and fix location to Prophet, to repair the bug. In summary,
prophet was able to repair 12 bugs out of 24, however only three of the 12 fixes
are not overfitting. Effectively, only three bugs have been successfully repaired by
Prophet.

Compared to Prophet, F1X was able to generate higher number of correct
patches for our benchmark. Prophet is a search-based technique which modifies the
code and rely on the test suite for correctness of the code, whereas F1X generates
a patch using the constraints generated by the test suite. Hence, the semantic-
based repair approach is more effective than the search-based repair approach in
our experiments.

Although F1X and Prophet was able to fix most of the bugs listed in our
benchmark, the quality of the patches are low. This is indicated in Table 7.6 column
“F1X” and “Prophet” with the patches produced by both failing on a large number
of differential fuzzing test cases, where the output generated by the program before
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static void j2k_read_siz(...)
{

cio_read(cio, 2);
if (0)

cio_read(cio, 2);

}

(a) F1X Patch

static void j2k_read_siz(...)
{
if (e->id == id) {

break;
if (e->id == id && !(1) ) {

break;

}

(b) Prophet Patch

static void j2k_read_siz(...)
{
if (image->comps[i].dx == 0 ||

image->comps[i].dx > 255) {
return;

}

}

(c) Transplanted Patch

static void j2k_read_siz(...)
{
if (!(image->comps[i].dx *

image->comps[i].dy)) {
opj_event_msg(..);
return;

}
}

(d) Developer Patch

Figure 7.14: Comparison of transplantation vs APR patch for bug-1

the fix and after the fix differ for non-crashing instances. Figure 7.14 shows the
patch comparison for bug ID 1 in Table 7.4. F1X generates an overfitting patch for
the divide by zero bug (i.e., bug ID 1 in Table 7.4), which avoids the execution of
an API call by inserting a condition which is always false. The quality of the patch
is determined by the differential fuzz testing of the patch, which shows failure for 13
out of 100 test cases generated using fuzzing, as indicated in Table 7.6. Similarly,
Prophet generates a patch which exclude the execution of a statement by inserting
a false logical connective. The quality of the patch is revealed to be over-fitting
by the differential fuzz testing of the patch which shows failure for two test cases
on average for 100 generated test cases. However, the transplanted patch which is
adapted from a developer patch from JasPer program does not fail on any of the fuzz
input generated for differential analysis. Moreover, manual inspection of the patch,
as shown in Figure 7.14d is correct (semantically equivalent to human patches) for
the divide by zero bug, which checks if the denominator is zero. Furthermore, our
evaluation also emphasizes the following: (1) quality of the patch in automated
repair tools depends on the quality of the test suite, (2) it is difficult for automated
repair tools to produce multi-line fixes. Compared to human written patches current
methods produce lower quality patches [37], hence augmenting transplantation
techniques can improve the quality of the patches.
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7.6.2.5 Comparison with Transplantation Tools

We compare our tool with existing transplantation tools to investigate the effec-
tiveness of our approach. There are several transplantation tools proposed by prior
work. CodePhage [126] is the most relevant tool for comparison as it transfers secu-
rity fixes, compared to µSCALPEL [9] and CodeCarbonCopy [125] which transfers
functionality. However, both CodePhage and CodeCarbonCopy are not publicly
available for evaluation. We requested the authors of CodePhage [126] to provide
access to the tool for comparison purpose, however due to unavoidable circum-
stances the primary developer was not available, hence we were not able to obtain
the tool. Since µSCALPEL is the only publicly available tool for evaluation in C
programs, we evaluate our approach against µSCALPEL [9]. Table 7.6.2.5 gives
an overview of the comparison.

We compare PatchWeave with µSCALPEL [9] for four errors, since it is designed
for transplantation of a feature. We only consider comparing PatchWeave with
µSCALPEL for patches that involves transplantation of a new function. Specifi-
cally, we manually specify the insertion point for the patch and evaluate the effec-
tiveness of µSCALPEL for four errors. Note that µSCALPEL has an advantage
over PatchWeave under this setup because it does not need to search for the entry
points and the insertion points. For each of these errors, as µSCALPEL is based
on genetic programming (GP), we rerun µSCALPEL for 10 times with different
seeds for 30 minutes for each run due the stochastic nature of GP. Table 7.6.2.5
shows that all of the runs for µSCALPEL could not complete as they resulted in
segmentation fault. The reason is because the implementation of µSCALPEL was
unable to parse the function in the donor program specifically "JasPer" which is the
donor program for the four errors we tried for transplantation. µSCALPEL fails
to extract the function from the donor program hence unable to successfully repair
the bug. We have reported this issue to the developers of µSCALPEL [9] and the
developers have acknowledged the issue. Similar inefficiency of µSCALPEL con-
firmed with the results of another prior experiments of µSCALPEL that have been
independently conducted by other researchers [82].
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Table 7.7: PatchWeave comparison with Transplantation Techniques

ID Donor Target Error Patch Class µSCALPEL
1 JasPer-1.900.3 OpenJPEG-1.5.1 DZ Class-III 3 N/A
2 OpenJPEG-1.5.2 JasPer-1.900.2 DZ Class-III 3 N/A
3 JasPer-1.900.13 OpenJPEG-1.5.1 IO Class-IV 3 Seg Fault
4 OpenJPEG-1.5.2 JasPer-1.900.12 IO Class-III 3 N/A
5 JasPer-2.0.12 OpenJPEG-1.5.1 NPD Class-III 7 N/A
6 OpenJPEG-1.5.2 JasPer-1.900.30 NPD Class-III 3 N/A
7 JasPer-1.900.3 OpenJPEG-1.3 DZ Class-III 3 N/A
8 OpenJPEG-1.4 JasPer-1.900.2 DZ Class-III 3 N/A
9 JasPer-1.900.14 OpenJPEG-2.1.0 UIO Class-III 3 N/A
10 OpenJPEG-2.1.1 JasPer-1.900.13 UIO Class-III 3 N/A
11 OpenJPEG-1.5.1 LibWebP@0.3.0 SIO Class-III 3 N/A
12 JasPer-1.900.4 LibWebP@0.2.0 ShO Class-II 3 Seg Fault
13 LibWebP@0.3.0 JasPer-1.900.3 ShO Class-I 3 N/A
14 OpenJPEG-1.5.2 JasPer-1.900.13 HBO Class-III 7 N/A
15 JasPer-1.900.14 OpenJPEG-2.1.0 HBO Class-IV 7 Seg Fault
16 JasPer-1.900.17 OpenJPEG-1.5.2 UIO Class-III 3 N/A
17 LibTiff-3.8.0 Jasper-1.900.8 MWE Class-III 3 N/A
18 Libsndfile-1.0.26 WavPack-5.1.0 ShO Class-III 7 N/A
19 Jasper-1.900.13 Jasper-1.900.2 IO Class-II 3 Seg Fault
20 LibMing-0.4.8 LibMing-0.4.6 DZ Class-I 3 N/A
21 LibMing-0.4.8 LibMing-0.4.6 NS Class-I 3 N/A
22 LibTiff-4.0.8 LibTiff-4.0.0 HBO Class-I 3 N/A
23 Libsndfile-master Libsndfile-1.0.26 GBO Class-I 3 N/A
24 Libzip-1.3.0 Libzip-1.1.2 MAF Class-I 3 N/A

Total 24 20 0

Division By Zero Error {DZ - Divide by Zero}, Integer Overflow {IO - Integer Overflow, UIO -
Unsigned Integer Overflow, SIO - Signed Integer Overflow},

Memory Error {NPD - Null Pointer Dereference, MAF - Memory Allocation Failure, MWE - Memory
Write Error}, Shift Overflow {ShO - Shift Overflow, NS - Negative Shift}, Buffer Overflow {HBO - Heap

Buffer Overflow, GBO - Global Buffer Overflow}

7.6.2.6 Syntactic vs Semantic Patch Transplantation

While PatchWeave performs semantic patch transplantation based on concolic ex-
ecution, existing approach (i.e., LASE [93]) infers syntactic edit scripts from ex-
amples (in our problem formulation in Figure 7.1, Pb serves as one such example)
and uses the inferred scripts to find edit locations, customizes the script to each
location, and applies the customized script. Since LASE targets Java programs and
there are no other syntactic patch transplantation tools available for C programs,
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we implemented a prototype inspired by the LASE [93] technique for comparison
purpose. Our comparison tool uses the same technique of clone detection and AST
transformation to locate the insertion point and transplant the patch. This allows
us to perform a comparison of syntactic vs semantic approaches for patch trans-
plantation. Our prototype implementation uses clone detection to identify a similar
function in Pc with the help of Deckard [55] syntactic distance calculation. It uses
GumTree [34] algorithm to formulate an AST transformation script which can be
used to transplant the patch from Pb to Pc. Table 7.8 shows the overall results of
the comparison. The “Time” column shows the total time taken in minutes for each
tool to fix the error/vulnerability, or 7 to indicate the repair was unsuccessful. The
“Fuzz” column denotes the results of differential fuzz testing in the form of x/y,
where x is the number of test cases where Pc results in a crash and Pd gracefully
exits, whereas y is the number of test case where Pd crashes or produce a different
output than Pc. The “Function” column indicates that if the syntactic approach
was able to correctly identify the insertion function for the transplantation, and
the “Var Map” column represents if the AST node matching for variable mapping
based on GumTree [34] algorithm was able to correctly map variables used for the
transplantation.

Syntactic approach was able to successfully repair almost all bugs in Class-I
and Class-II (six out of eight bugs) because these bugs do not require variable
translations. The donor fix included changes which are not relevant for the bug in
ID 13, hence the syntactic approach failed to filter the relevant fix. These two classes
represent syntactically very similar programs such as backporting versions or forked
projects, hence AST node matching could find the correct insertion point once the
inserting function is located using clone detection. One interesting observation in
our experiment is that for Class-I and Class-II syntactic method performs better
compared to the semantic method. This is because the semantic method requires
expensive symbolic execution to calculate the insertion point while syntactic method
only requires clone detection which is relatively lightweight. Syntactic method was
not able to transplant any of the fixes that require a translation of variables although
in few cases it was able to identify the correct insertion function. This is due to the
failure of syntactic approach to map variables across different data-structures. In
these cases, our approach PatchWeave is more effective.
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Table 7.8: PatchWeave comparison with Syntactic Patch Transplantation

ID Donor Target Error Patch
Class Semantic Method Syntactic Method

Time Fuzz Function Var Map Time Fuzz
1 JasPer-1.900.3 OpenJPEG-1.5.1 DZ Class-III 5.0 37/0 3 7 7 -/-
2 OpenJPEG-1.5.2 JasPer-1.900.2 DZ Class-III 8.0 22/0 7 7 7 -/-
3 JasPer-1.900.13 OpenJPEG-1.5.1 IO Class-IV 7.5 5/0 3 7 7 -/-
4 OpenJPEG-1.5.2 JasPer-1.900.12 IO Class-III 8.5 42/0 7 7 7 -/-
5 JasPer-2.0.12 OpenJPEG-1.5.1 NPD Class-III 7 -/- 7 7 7 -/-
6 OpenJPEG-1.5.2 JasPer-1.900.30 NPD Class-III 15.0 9/0 7 7 7 -/-
7 JasPer-1.900.3 OpenJPEG-1.3 DZ Class-III 3.5 52/0 7 7 7 -/-
8 OpenJPEG-1.4 JasPer-1.900.2 DZ Class-III 5.5 20/0 3 7 7 -/-
9 JasPer-1.900.14 OpenJPEG-2.1.0 UIO Class-III 6.0 42/0 7 7 7 -/-
10 OpenJPEG-2.1.1 JasPer-1.900.13 UIO Class-III 18.0 46/0 7 7 7 -/-
11 OpenJPEG-1.5.1 LibWebP@0.3.0 SIO Class-III 2.5 90/0 7 7 7 -/-
12 JasPer-1.900.4 LibWebP@0.2.0 ShO Class-II 5.0 99/0 3 3 4.0 99/0
13 LibWebP@0.3.0 JasPer-1.900.3 ShO Class-I 11.0 98/0 3 3 7 -/-
14 OpenJPEG-1.5.2 JasPer-1.900.13 HBO Class-III 7 -/- 7 7 7 -/-
15 JasPer-1.900.14 OpenJPEG-2.1.0 HBO Class-IV 7 -/- 7 7 7 -/-
16 JasPer-1.900.17 OpenJPEG-1.5.2 UIO Class-III 12.0 42/0 3 7 7 -/-
17 LibTiff-3.8.0 Jasper-1.900.8 MWE Class-III 26.0 18/0 7 7 7 -/-
18 Libsndfile-1.0.26 WavPack-5.1.0 ShO Class-III 7 -/- 7 7 7 -/-
19 Jasper-1.900.13 Jasper-1.900.2 IO Class-II 8.0 34/0 3 3 5.5 40/0
20 LibMing-0.4.8 LibMing-0.4.6 DZ Class-I 5.5 98/0 3 3 10.5 100/0
21 LibMing-0.4.8 LibMing-0.4.6 NS Class-I 5.5 29/0 3 3 6.0 32/1
22 LibTiff-4.0.8 LibTiff-4.0.0 HBO Class-I 26.0 75/0 3 3 8.0 76/1
23 Libsndfile-master Libsndfile-1.0.26 GBO Class-I 16.0 73/0 7 7 7 -/-
24 Libzip-1.3.0 Libzip-1.1.2 MAF Class-I 42.0 90/0 3 3 6.0 95/0

Total 24 20 20 11 7 6 4

Division By Zero Error {DZ - Divide by Zero}, Integer Overflow {IO - Integer Overflow, UIO -
Unsigned Integer Overflow, SIO - Signed Integer Overflow},

Memory Error {NPD - Null Pointer Dereference, MAF - Memory Allocation Failure, MWE - Memory
Write Error}, Shift Overflow {ShO - Shift Overflow, NS - Negative Shift}, Buffer Overflow {HBO - Heap

Buffer Overflow, GBO - Global Buffer Overflow}

7.6.3 Threats to Validity

There are several threats to validity of our approach, related to the external tools
we use or the datasets that we use in our experiments. We seek to mitigate such
threats by using actively maintained external tools such as KLEE, and conducting
our experiments on a wide variety of subjects, including those studied by previous
work on software transplantation [126].

We would like to highlight two issues related to the availability of tests. First,
we assume the presence of at least one test (i.e., the exploit). If no test is available,
as may be the case in certain domains (e.g., backporting of Linux patches [103]),
our technique cannot be applied as it is. Furthermore, relying only on one test
case could result in a patch that is overfitted, which is likely to disrupt correct
behavior of the application. We address this concern, with the use of differential fuzz
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testing where we generate mutated inputs from the single failing test case. Then we
employ differential behavior analysis to detect if the transplanted patch introduces
disruption to correct behavior, by comparing the output of Pc and Pd for each
generated test-case. Second, due to practical considerations, we have not assumed
the presence of a large number of tests. Moreover, requiring more than one test case
is often an impractical requirement since more often vulnerability reports contain
a single-exploit, hence our focus is to provide an automation to help developers fix
the issue given a single test-case is provided. If more tests are available, we could
extend our technique to efficiently navigate all candidate patches and select one
(similar to the selection of patches in prior work in program repair e.g. F1X [89]).
However, such a patch space exploration is not part of our current PatchWeave
implementation.

7.7 Summary
In this chapter we formulate the patch transplantation problem. We also propose a
fully automated solution to patch transplantation based on concolic execution. The
patch transplantation problem caters to a real-life need in the practice of software se-
curity: even when an important vulnerability is detected and a patch is constructed,
it is non-trivial to adapt the patch for other similar implementations exhibiting the
same vulnerability. Indeed, associating a CVE to a newly found vulnerability and
publishing the patch, may make these other similar un-patched implementations
more vulnerable since attackers will have more knowledge on how to exploit the
vulnerability. The patch transplantation problem studied in this paper provides a
solution to reduce or remove such exposure to vulnerabilities.
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CHAPTER 8. RELATED WORK

Chapter 8

Related Work
This chapter discusses the existing related work in the areas of program repair,
software transplantation, symbolic execution, program synthesis and security vul-
nerability repair. We summarize the related work and discuss the limitations.

8.1 Automated Program Repair
Automated program repair [97] is an emerging technology, which seeks to automat-
ically rectify program errors, typically as observed via failure of tests or assertions.
Several approaches have been proposed to automatically generate patches [100, 79,
154, 160, 92, 138, 88, 105, 91, 68, 161, 158, 136, 146]. A review of the area ap-
pears in [69]. Common techniques for automated repair include program mutations
via genetic search [68], specification inference via symbolic execution or SAT solv-
ing [45, 100, 92], repair via abstract interpretation [76], code transplantation [126],
and learning and prioritization of patch candidates and fix patterns [6, 80, 79,
116]. CPR is more related to specification inference based program repair. These
approaches employ symbolic execution to generate a repair constraint, which the
buggy program needs to satisfy to pass a given test-suite. Solutions to the repair
constraint, in the form of patch expressions, are then obtained using program syn-
thesis. Most of the existing works on test-based program repair suffer from test
data overfitting, where the patched program fails for tests outside the given test-
suite [69, 110]. To alleviate overfitting, one may use more general oracles beyond
tests [36], or may generate tests to rule out overfitting patches [39]. Certain works
develop customized repair strategies for fixing security vulnerabilities by either em-
ploying heuristics [52], by applying fix templates that avoid specific errors [127], or
by hooking up with sanitizers [40]. In contrast, CPR is a general purpose repair
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engine, though we have also shown its efficacy on the dataset of [40]. CPR gener-
ates tests from an initial seed test by modifying the path condition, in the style of
concolic execution. However, the path of a test contains yet to be inserted patches.
Hence the path exploration in concolic execution is accompanied by a systematic
reduction of the pool of patch candidates in CPR. Finally, counterexample-guided
inductive synthesis (CEGIS) [134, 135, 4] represents a synthesis technique, in which
the desired solution is iteratively refined based on a loop between a generator and
a verifier. CPR also leverages counterexamples to reduce the patch space, and has
some relationship to CEGIS. In CPR, we use a counterexample-guided refinement
of the parameter constraints of the available patches. The work of [64] performs
concolic execution on specific tests to check whether a patch candidate meets a
specification; if it does not, the resultant constraint is added for the generation of
future repair candidates. In contrast, CPR works on abstract patch candidates and
refines them. Furthermore, [64] terminates as soon as there is no counterexample
anymore, which again can lead to functionality deleting patches.

Furthermore, the work of [90] uses unrealizability of patch expression synthesis
for pruning paths in symbolic analysis. The recent work of [51] also studies unreal-
izability of syntax guided synthesis problems. In comparison, CPR use of concolic
path exploration for program repair also prunes feasible paths, where none of the
patch expressions from the remaining patch pool can be inserted. For scalability
of reasoning we do not maintain the patches as second order variables; instead
they are maintained as abstract patch templates with parameters denoting interval
constraints.

8.2 Software Transplantation
Automated software transplantation has been applied for solving several software
maintenance tasks, including feature transplantation [9, 86], transplanting valida-
tion checks [126], and transplanting shellcode for remote exploits [8]. µSCALPEL [9]
and CodeCarbonCopy [125] transplant new functionality from a donor application
Pb into a recipient application Pc. Both of these approaches require a developer
to specify the insertion point and identify the functionality to be extracted for
transplantation. µSCALPEL [9] uses genetic programming with program slicing to
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transplant functionality from a donor system to a target system but requires manu-
ally specifying the entry point of code and the insertion point in the host program.
Meanwhile, CodeCarbonCopy [125] requires manual specification of (1) the donor
function that captures the functionality to be transplanted, (2) the insertion point
in the host program, and (3) extra parameters for removing irrelevant functionality
in the transferred code. Code Phage [126] eliminates errors such as integer overflow
by transferring checks from Pb to Pc. All three approaches are limited in trans-
planting new code (e.g., function and check condition) and could not handle the
case where the donor and the recipient are code edits in the form of a patch. Mean-
while, PatchWeave provides a fully automated approach for patch transplantation
without the manual effort required to specify the donor function and the insertion
point.

Several techniques transplant Java code edits [166, 82]. Although the donor
Pa and the recipient Pc in the patch transplantation problem could be regarded
as code clones, GRAFTER [166] uses code clones for test reuse and differential
testing, whereas PatchWeave uses the similarity between Pa and Pc to automati-
cally identify insertion points. Similar to PatchWeave that encourages code reuse,
program splicing [82] reuses existing code from the web, whereas we reuse security
patches. Overall, [166] and [82] supports Java programs instead of C programs but
prior study shows that there are less exact clones in C functions than Java meth-
ods [114]. The lack of exact clones in C functions implies that the clones’ adaptation
in C programs could be more challenging than in Java programs.

8.3 Patch Backporting
To help developers backport patches, several approaches have been proposed [112,
144]. Tian et al. [144] proposed an approach to automatically identify bug-fixing
patches that should be backported to old versions. Ray et al. [112] proposed to
detect and characterize porting errors to help developers avoid them. In contrast,
we directly backport patches and provide patch suggestions for developers. An-
other line of relevant work is the Backports Project [5], which enables old Linux
kernels to run the latest drivers. The Backports Project develops a set of tools to
automate the backporting process for Linux drivers [102, 143] to make them com-
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pilable with old kernel versions. The Backports Project uses the program matching
and transformation tool Coccinelle [65] to allow developers to express backporting
transformation in a generic way that is expected to be applicable to many versions.
In contrast, FixMorph is fully automated and does not require manually created
transformation rules. A prior approach by Thung et al. [143] automatically ex-
tracts code transformation rules. However, this approach requires guidance from
compilation errors, and it can only transform patches that affect a single line of
code.

Program transformation is a similar line of work which infer transformation rules
from human-written patches and transfer patches to another codebase by applying
the inferred rules. Program transformation has been applied to many software
maintenance tasks, including automating repetitive code edits [113, 94, 93, 96, 99],
intelligent refactoring [95, 38] and fixing software bugs [10, 77, 6]. Those approaches
solve problems similar to FixMorph, but there are key differences. Most existing
works infer transformation rules from multiple human patches, while FixMorph
synthesizes rules from only one patch. Although GenPat [54] and Sydit [94] also
rely on only one example, they either require a large codebase to provide statistical
information or synthesize rules by simply generalizing all identifiers, which results in
many false positives, as also confirmed by our experiments on Linux. Second, some
existing transformation techniques [10, 77, 6] transform patches across different
projects, and the others [95, 38, 93, 94] transform patches within the same codebase.
In contrast, FixMorph leverages the similarity between Linux kernel versions to
synthesize properly generalized transformation rules.

8.4 Trust Aspects in APR
Related work includes considerations of trust issues [115, 3, 11] and studies about
the human aspects in automated program repair [17, 139, 71, 37, 59], user studies
about debugging [104], and empirical studies about repair techniques [74, 63, 98,
151, 156, 163, 87, 73].With regard to human aspects in automated program repair,
our survey study contributes novel insights about the developers’ expectations on
their interaction with APR and which mechanism help to increase trust. With re-
gard to empirical studies, our evaluation contributes a fresh perspective on existing
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APR techniques.
Trust issues in automated program repair emerge from the general trust issues in

automation. Lee and See [70] discuss that users tend to reject automation techniques
whenever they do not trust them. Therefore, for the successful deployment of
automated program repair in practice, it will be essential to focus on its human
aspects. With respect to this, our presented survey contributes to the knowledge
base of how developers want to interact with repair techniques, and what makes
them trustworthy.

Existing research on trust issues in APR focuses mainly on the effect of patch
provenance, i.e., the source of the patch. Ryan and Alarcon et al. [115, 3] performed
user studies, in which they asked developers to rate the trustworthiness of patches,
while the researchers varied the source of the patches. Their observations indicate
that human-written patches receive a higher degree of trust than machine-generated
patches. Bertram et al. [11] conducted an eye-tracking study to investigate the
effect of patch provenance. They confirm a difference between human-written and
machine-generated patches and observe that the participants prefer human-written
patches in terms of readability and coding style. Our study, on the other hand,
explores the expectations and requirements of developers for trustworthy APR. The
work of [153] proposed strategies to assess repaired programs to increase human
trust. Our study results confirm that an efficient patch assessment is crucial and
desired by the developers. We note that [153] focuses on how to assess APR, while
we focus on how to enhance/improve APR in general, specifically in terms of its
trust.

8.5 Patch Validation
Since G&V techniques enumerate a search-space to generate patches and test each
candidate patch against a provided test oracle, they scale to relatively small search
spaces. In order to achieve effectiveness for a large search-space several works on
optimizing the repair process have been discussed in the literature. Optimizations
for G&V techniques have been studied widely over recent years to improve the
quality of the patches [138, 39] and to improve performance efficiency [89, 154].
GenProg-AE [154] improves overall repair time by reducing validation cost spent
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on redundant test executions by identifying program-equivalence of functionality
via lightweight analysis.

F1X [89] reduces validation cost using program-equivalence over the space of
candidate patches. Various equivalence relations can be accommodated into the
framework based on values or program dependencies. Such an approach works on
an implicit representation of the patch space. Such program-equivalence relation
based optimizations are orthogonal to our compilation-free repair approach, as we
reduce the cost of recompilation while traversing an explicitly represented search
space of edits. The focus of our work is to improve generate and validate search
based repair tools, tools which work with an explicit representation of the search
space.

More recent work to address the recompilation cost have been proposed using
on-the-fly patch validation [41, 23]. PraPR [41] uses mutation at the byte-code
level to achieve on-the-fly validation for JVM based program repair. Extracting the
byte-code changes and directly applying the mutation at run-time is shown to be
an order of magnitude faster than state-of-the-art for JVM based byte-code repair
tools. In combination with HotSwap technique, PraPR [41] can bypass expensive
compilation on patch generation, process creation and JVM warm-up in order to
validate a candidate patch. However PraPR is limited to only repairs that can be
fixed via byte-code manipulation and is shown to be imprecise [23]. UniAPR [23]
extends the work of PraPR to source-code and byte-code for JVM based repair
techniques. Compared to PraPR, UniAPR provides on-the-fly patch validation to
source-level by translating the patch into byte-code changes and reusing PraPR for
validation. UniAPR does not completely eliminate the recompilation cost since it
uses incremental compilation to obtain the byte-code changes that can be injected
at runtime. In comparison, we propose to completely remove the compiler from the
repair-loop by using an interpreter to validate the patches on-the-fly. CFR is not
limited to specific language or repair tool, in fact our technique can be applied for
Java repair tools provided a lightweight interpreter such as the GDB, is tuned for
Java.

In order to improve the latency of program repair several approaches have been
proposed to prioritize the search-space. Prophet utilizes features extracted from
human-written patches to predict a correctness score for each candidate patch and
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enumerate the search-space in the ranked order to effectively find the correct/-
plausible patch in less amount of time. ACS [160] prioritizes patches based on
information gained from documentation of the source-code for older versions of the
software, while S3 [66] use a combination of semantic and syntactic properties to
prioritize its search space. Such optimizations are synergistic to CFR, and can be
achieved on top of the efficiency derived from compilation-free repair.
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CHAPTER 9. CONCLUSION

Chapter 9

Conclusion
This chapter summarizes the results and contributions of this thesis work, discusses
our perspectives and the future work.

9.1 Summary and Impact
In this thesis, we have investigated the challenges in generating security patches to
preserve security of software systems and proposed several techniques to automate
current processes, to reduce the time to fix thereby reducing the exposure win-
dow of identified software security vulnerabilities. We first studied the impeding
challenges in the adoption of existing program repair tools and the trustworthi-
ness of auto-generated patches perceived by developers. Identifying the limitations
and challenges in existing program repair tools helps to shape the future work on
program repair to the extent of wider adoption of program repair in practice. Con-
sidering the insights gained from our study, we propose a solution to speedup the
efficiency of generate & validate repair techniques, that replace the compiler from
the repair-loop with a lightweight interpreter that is able to achieve the same result
at a low cost. Using on-the-fly patch validation with existing program repair tools
for C/C++ programs we show the benefits of compilation-free repair. This work
also shows the benefit of a concurrent repair framework that integrates multiple
repair tools with a single validation back-end to improve throughput and latency
in program repair. In addition, to provide correctness guarantees, we proposed a
novel program repair technique “concolic program repair” that efficiently navigates
a large-scale search-space for patch generation, while ensuring high-quality patches
are generated with respect to a user-provided program specification. In doing so,
we also provide additional guarantees for the correctness of the generated patches
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by generating new test-cases. Moreover, we study two additional problems related
to fixing software security vulnerabilities; namely the automated patch backporting
problem and the automated patch transplantation problem. A trustworthy patch
that is generated for the reported software security vulnerability can be backported
to various other older versions of the software, using our proposed backporting
technique. Moreover, the same patch can also be transplanted to other seman-
tically equivalent programs which may exhibit potential for a similar variant of
the identified software security vulnerability. At it’s core, our contributions work
cohesively to alleviate the problem of generating security patches.

9.2 Perspectives

9.2.1 Importance of Vulnerability Repair

A recent study on software security vulnerabilities reveals that 2021 alone there have
been 28,695 flaws disclosed which is a record breaking amount with a significant
increase from 23,269 in 2020 [118]. Additionally, the report finds the average time
to fix vulnerabilities (i.e. window of exposure) is 200 days and for high-severity vul-
nerabilities its 246 days, which also aligns with our findings in our Linux empirical
study. Despite empirical studies providing insights and evidence of the increasing
importance of vulnerability repair especially of those in software, there is little to no
work to improve the state of the art in reducing the impact of such vulnerabilities
for the average end-user. Our empirical analysis on the Linux kernel project indi-
cates alarming delays in providing necessary fixes to identified vulnerable systems,
despite the availability of a solution. The current patch propagation mechanism are
inadequate to provide a solution to all affected systems (i.e. fixing all vulnerable
stable versions), in some cases as observed from the Linux back-porting effort may
not have a fix provided resulting in a vulnerabilities open for exploitation for several
months. Recently disclosed vulnerability Log4J [49] further reveals the inefficiency
in practice to systematically identify and provide timely fixes to mitigate the threat
from been exploited by malicious users. In fact, Log4J [49] is an example which
highlights the efficiency of the malicious actors in leveraging the information of
publicly disclosed information to generate an exploit compared to developers effort
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to generate a fix. Our investigations into patch backporting and patch transplanta-
tion should call for more research in this direction, to facilitate efficient solutions in
addressing the challenges faced by developers to keep software secure. More focus
should be given to reduce the average time to fix critical and high severity vulner-
abilities to improve the window of exposure and consequently the overall security
posture of applications.

9.2.2 Automation is the Key

Given the importance of fixing software vulnerabilities and the increasing numbers
of malware exploiting such vulnerabilities, it is crucial to invest on automation and
improve the infrastructure to facilitate the demands of generating effective solutions
much more efficiently. Automated Program Repair (APR) is one such potential so-
lution to alleviate the burden of generating patches by assisting the developers to
find quick solutions. However, one of the main challenges in APR (as with any
automation technology) is the trust for the auto-generated patches perceived by
the developers, who will ultimately decide if the generated patch is suitable to be
applied/integrated. While previous work highlighted the bias in developers and
the inertia to adopt automated solutions, we tried to identify how to enhance the
trust by developers as a step towards achieving the goal of wide scale adoption
of APR. Our empirical study consisting of 100+ software practitioners is one of
the first large-scale empirical study in program repair that shows positive response
for APR adoption. We also capture the challenges and requirements expected by
the developer in order to achieve adoption that gives direction to the APR com-
munity when designing such systems. Overall there was a positive response from
the developers to adopt APR into their development processes, given the necessary
trust requirements are met. Although our empirical study focused on automated
program repair, the survey methodology and result interpretation code-book can
be inspiration on conducting empirical analysis for other automation technology as
well. The focus of our study was to capture the perception for a specific technology
(i.e. APR) and gain insights for the requirements for wide scale adoption.
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9.2.3 Compilation-Free Repair

Current state of the art APR techniques mostly focused on finding the correct so-
lution in an unconstrained environment. However, the need in practice enforces
several constraints on the repair techniques such as low latency and high through-
put. If APR is to be adopted in practice, it should be able to enumerate a large
search-space efficiently and generate a ranked list of plausible patches within a short
duration. We investigated one commonality in the repair techniques that can be
improved, which is the patch validation step. Patch validation is one of the steps
in program repair specifically for generate & validate techniques whereby candidate
patches are validated using a suitable test oracle. A key step for validation is re-
compilation which translates the candidate patch into an executable binary that
can be tested against a test oracle. In our work on compilation free program repair
we show significant performance gains, irrespective of the search strategy used to
navigate the explicitly defined search space of patch candidates. Of course how
much performance gain is accrued may differ, based on the search strategy. Our
proposed technology can open new research directions for program repair taking
advantages of interoperability within existing repair systems. Exchanging informa-
tion between several repair techniques could lead for high-quality patches, where the
fix ingredients are generated by different repair techniques combined with our inte-
grated framework. In addition to improvement in space size, a divide-and-conquer
approach can improve the search where each repair tool enumerates a separate par-
tition of the search space simultaneously. Generating multi-line patches becomes
viable if there is an increase in patch space exploration speed allowing repair tools
to navigate a much richer patch space. Existing repair techniques need to tackle
the problem of combinatorial explosion of the search space when generating multi-
line patches, which can be alleviated by an efficient patch-validation technique such
as compilation-free repair. In addition to multi-line repair it will be interesting
to incorporate multi-language repair which combines repair technology of different
languages such as C language and Java language for software systems that requires
code from both languages. Such repair would benefit software systems where the
library is developed using a low-level language such as C and the application is
developed using a high-level language such as Java.
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9.2.4 Gradual Correctness

Another significant difficulty in program repair comes from the lack of complete
specification of intended program behavior. Since a detailed specification of correct
behavior is usually not available, existing program repair techniques are guided by
tests. Relying on test cases has lead to the patch overfitting problem, which ef-
fects the reliability of the generated patches leading to trust issues perceived by
developers. Lack of specification affects the repair problem in the initial stage of
understanding the correct behavior to fix the program and in the latter stage of
providing guarantees to the developer for the correctness of the patch. In our work
on “concolic program repair” we relaxed the requirement of complete specification
into partial specification which is a tractable problem compared to inferring whole
program specification and providing verification for such. Especially for software
vulnerabilities a crash free constraint can serve the purpose of a specification to
summarize the correct behavior with respect to a given security property, similar
to a developer provided program assertion capturing the logical behavior of the
program. This fresh look into the specification problem allowed us to provide guid-
ance into program repair such that it can be served as a means of detecting and
discarding overfitting patches that only pass the provided test-suite. Furthermore,
such specification can also be used to generate new test-cases to provide additional
observations for the correctness of the patch that enhance the trust perceived by
the developer, since additional test-cases was an indication for correctness reported
by developers in our survey. Our repair technique is the first of its kind that can
incorporate a user-provided specification into the repair process and generate ad-
ditional verification for the generated patches. Conceptually, we also presented a
viewpoint of “gradual correctness”, where the repair algorithm was formulated as
an anytime algorithm that systematically explored both the input space and patch
space. This notion of gradual correctness, can also be meaningful for program syn-
thesis, recovery and transplantation. Gradual correctness can thus help us produce
high quality automatically constructed code.
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9.2.5 Recurring Vulnerabilities

Generating a patch for the identified software vulnerability alone is not sufficient
to mitigate the threat exposed by the discovery of the vulnerability. The generated
repair should be propagated to all versions of the software that has been impacted
by the discovery. To understand the effect and challenges in providing automated
solutions to propagate such patches, we investigated the backporting activities in
the Linux kernel because it is a large-scale widely used codebase. The sheer com-
plexity of the patches, the diversity of the transformations involved, and the absence
of test cases as specification pose additional challenges for patch backporting. Due
to the popularity and importance of the Linux kernel, it could be worthwhile for
the program repair community to evaluate efficacy of repair techniques on Linux as
well. In our envisioned workflow, APR will generate the initial fix, and it can be
automatically backported into an old stable versions. Instead of trying to generate
fixes for each version separately, the workflow should reuse the information from one
patch to generate a fix into other program versions. FixMorph shows the promise
of automated backporting of patches on the Linux kernel code-base, thereby demon-
strating the practical promise of such techniques. Apart from reducing exposure to
security vulnerabilities, such patch backporting is of significant practical value for
automating software maintenance tasks.

We also formulated the patch transplantation problem in this thesis. Which
considers the impact of similar software, which extends the notion of similarity
into higher order abstractions such as standards, protocols etc. We proposed a
fully automated solution for patch transplantation based on concolic execution, to
leverage the similarity and generating fixes based on a repair from a semantically
similar program. The patch transplantation problem caters to a real-life need in
the practice of software security: even when an important vulnerability is detected
and a patch is constructed, it is non-trivial to adapt the patch for other similar
implementations exhibiting the same vulnerability. Associating a CVE to a newly
found vulnerability and publishing the patch, may make these other similar un-
patched implementations more vulnerable since attackers will have more knowledge
on how to exploit the vulnerability. The patch transplantation problem studied in
this thesis provides a solution to reduce or remove exposure to such vulnerabilities.
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9.3 Future Work
Our research work reveals several interesting future research directions. Although
we proposed several techniques to alleviate the problem of automatic patching of
software security issues, automatically fixing software security vulnerability is still
a problem that is not completely solved, and can have a significant financial/eco-
nomical impact. Current state of the art for program repair are still in the early
stage of both research and practice. Reflecting on our findings and perspectives, we
envision the following important future research work.

9.3.1 Trustworthy Program Repair

One of the key-challenge for the program-repair community to address is to gain de-
veloper trust in auto-generated patches. In our preliminary investigations into trust
enhancement issues of program repair reveals current state-of-the-art techniques do
not meet the requirements of the software developers/maintainers. Specifically, pro-
viding additional guarantees and explanation for the generated repair, are some of
the key-aspects that should be investigated. Moreover, developers require the ex-
change of artifacts such as generated tests as inputs as well as output of repair tools.
Further study is required to improve the bias developers would associate with an
automated solution and how to overcome such bias by enhancing the trust for the
auto-generated patches. More empirical analysis with controlled user-studies could
help understand the challenges in realizing practical APR. For instance, an empiri-
cal evaluation of existing program repair tools with software practitioners using the
tools in their day-to-day development activities could provide better insights on the
challenges to adopt APR in practice.

9.3.2 Program Repair for Binaries

The proposed techniques in this thesis, works at the source-level, where security
patches can be efficiently generated. First and foremost, it would be interesting
to take forward the techniques proposed in this work for binary repair. Front-line
defense against exploitation of software security vulnerabilities remains at the binary
executable that are deployed in software systems. Transplanting patches into binary
executable can further increase the security of software systems. These patches can
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be generated from either source-level program-repair techniques or manually crafted
patches by the developer. Emergence of binary-rewriting techniques [30] shows
promise in the direction of repairing program binaries. Integrating our proposed
approaches with program binaries can minimize the impact of software security
vulnerabilities.
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