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Abstract—Learning-based APR techniques continue to face
challenges in generating multi-line patches. We identified two
fundamental limitations in existing learning-based APR tools.
First, the length of the input sequence in existing APR tools
is limited, restricting them from gathering information from
compacted code contexts. Second, they fail to capture semantic
dependencies among generated patches. We introduce FUSION-
REPAIR, a transformer-based approach designed to capture ad-
ditional context information from broader contexts and fix bugs
by knowledge transfer-based patch generation. For this purpose,
we have adapted the Fusion-in-Decoder(FiD) architecture to
provide an expanded context. We utilize an iterative program
repair paradigm to generate patches based on the knowledge of
previously generated patches.

Our experiment with Defects4J v2.0, shows FUSIONREPAIR
can produce 55 single-line fixes and 28 multi-line fixes, identical
to the developer patch. Comparison with state-of-the-art tools
such as ITER and DEAR shows 35% and 18% improvements
respectively. Our results show that FUSIONREPAIR has signifi-
cantly outperformed current state-of-the-art tools in addressing
bugs that require multi-line patches.

Index Terms—automated program repair, deep learning,
fusion-in-decoder

I. INTRODUCTION

While different classes of Automated Program Repair
(APR) techniques can be identified in literature, learning-based
techniques [1], [2], [3], [4], [5], [6] have recently gained more
attraction, specially with the emergence of Large Language
Models (LLMs). Learning-based techniques focus on mining
bug fixes to generate abstract templates that can be used to fix
new bugs. These techniques can address the limitations found
in other techniques, such as large search space [7], or being
limited to defined templates [8].

Single-line patches entail modifying one line of a buggy
program to fix the bug. Majority of state-of-the-art APR
tools such as DLFix [4], CoCoNuT [5], and CURE [6] have
demonstrated success in generating single-line patches. Multi-
line patches require the buggy program to be modified at multi-
ple different non-contiguous locations. Current state-of-the-art
techniques cannot successfully fix multi-line bugs. However,
bugs that need multi-line patches are commonly present in
software. Generating a multi-line patch is challenging due to
the interdependence between the multi-line modifications.

Few APR tools focus on multi-line patch generation. No-
table examples include: ITER [1], DEAR [2], and HER-

CULES [9]. ITER has achieved the best results compared
to existing APR multi-line patch generation tools, with 61
single-line patches and 15 multi-line patches generated in
DEFECTS4J [10] benchmark. Despite their successes, the
following limitations can be observed in these techniques:

• length of the input sequence is limited, hindering its
ability to gather information from extensive code contexts

• does not transfer knowledge of previously generated
patches to subsequent multi-line edits.

We introduce FUSIONREPAIR, a transformer-based tech-
nique that overcomes these limitations by offering more con-
text and using an iterative repair approach to capture seman-
tic dependencies in multi-line edits. First, we curate a new
training dataset using the perturbation tool used in SELFAPR
[11]. Using 8 open-source Java projects and 16 perturbation
rules we curate a dataset with more than 17M data samples.
Second, we adapt the Fusion-in-decoder (FiD) architecture
[12], utilizing multiple encoders to expand the APR tool’s
context, marking the first use of FiD for enhancing program
context. Third, we employ an iterative repair approach to
generate patches informed by previous iterations. In each
iteration, FUSIONREPAIR concentrates on one buggy location,
integrating candidate fixes from previous iterations to apply
knowledge from past patches to other buggy locations.

Our experiment results show that FUSIONREPAIR surpasses
existing state-of-the-art multi-line bug-fixing techniques by
using a small LLM with only 60 million parameters,
thereby consuming fewer resources. FUSIONREPAIR achieves
significant results on Defects4J v2.0.0, successfully fixing 51
single-line bugs and 20 multi-line bugs in the initial iteration.
Using three iterations, it further improves its efficacy by
resolving 55 single-line bugs and 28 multi-line bugs for an
exact match.

In summary, we make the following key contributions:

• A new training dataset for learning-based APR techniques
for multi-line edits

• Use of FiD architecture to overcome LLM input sequence
length limits. To the best of our knowledge, the first use
of FiD in APR to increase the program context.

• A novel repair technique that transfers knowledge from
previously generated patches to subsequent edits.



II. MOTIVATIONAL EXAMPLE

To illustrate the limitations of the state of the art for
program repair and motivate the need for better repair ca-
pabilities, let us consider two examples extracted from the
Defects4j [10] dataset. Figure 1 depicts the developer fix
for the bug reported in Closure 123. The bug is caused
due to the use of incorrect variable reference, which leads
a to test failure. The developer fix the bug by updating the
right hand side assignment of rhsCOntext in line 285 to
getContextForNoInOperator(context). The devel-
oper fix requires project-specific tokens such as the method
name getContextForNoInOperator and the variable
context. None of the traditional search-based repair tools
were able to fix the bug [13] and existing neural program
repair tools cannot fix such bugs since they require project-
specific tokens, which are not part of the training dataset [11].
Recent LLM-based repair tools can provide additional context
within the prompt to the model, however, the amount of
information that can be provided as context is also limited.
Without enough context, although LLMs can generate reason-
able code, they fail to generate the correct fix [14]. Most
learning-based APR tools generally provide 5 lines above
and 5 lines below the buggy line as the code context, hence
such techniques will not be able to capture the method call
getContextForNoInOperator into the context as it is
40 lines apart from the buggy line as shown in Figure 1.

Observation 1: Learning-based repair tools need the nec-
essary contextual information to generate the correct patch,
which can be 50 lines apart from the fix location. Thus, the
model cannot capture the necessary context due to limitations
of the length of the context that can be provided to it.

37 class CodeGenerator {
. . . ...

241 // code block 1
242 case Token.COMMA:
243 Preconditions.checkState(childCount==2);
244 unrollBinaryOperator(n,Token.COMMA,",",context,

getContextForOperator(context) ,0,0);

245 break;
. . . ...

281 // buggy code block 2
282 case Token.HOOK: {
283 Preconditions.checkState(childCount == 3);
284 int p = NodeUtil.precedence(type);

285 Context rhs = Context.OTHER;

285 Context rhs = getContextForOperator(context);

Fig. 1: Code snippet of the developer patch for Closure 123.
Note that the code is modified to include only the relevant
context for brevity.

Figure 2 depicts the developer fix for the bug Math 79.
The lines highlighted in green refer to new lines added and
lines highlighted with red indicate lines that are removed. The
fix for buggy location 1 requires a change in the datatype from
int to double for the returning value sum as the expected
return value type for this function is double.

The value for the sum is computed at Line 1627 as shown in
Figure 2 using the value for variable dp which is also defined
as a type of int. Hence, due to the dependency of dp on sum,

the same datatype conversion from int to double needs to be
applied on the variable dp as well. This semantic dependency
between sum and dp is not captured in existing state-of-the-
art tools. Prior work [1] reports that this bug Math 79 is not
fixed by any of the existing state-of-the-art tools.

Observation 2: Existing learning-based APR tools do not
capture knowledge from previously generated fixes and fail to
capture any semantic dependencies between generated patches.
Hence, they are incapable of generating fixes for this bug.

1623 public static double distance(int[] p1, int[] p2) {
1624 // buggy code block 1

1625 int sum = 0;

1624 double sum = 0;

1625 for (int i = 0; i < p1.length; i++) {
1626 // buggy code block 2

1626 final int dp = p1[i] - p2[i];

1626 final double dp = p1[i] - p2[i];

1627 sum += dp * dp;
1628 }
1629 return Math.sqrt(sum);
1630 }

Fig. 2: Developer patch for Math 79

Addressing these two limitations, our proposed solution FU-
SIONREPAIR can generate a correct patch for both examples
Closure 123 and Math 79. Instead of supplying five lines
above and below the buggy line, we incorporate multiple code
blocks into the model using the FiD architecture [12]. Hence,
FUSIONREPAIR can capture information from an extended
context to generate such fixes.

Using the increased context, FUSIONREPAIR can utilize
previously generated patches for a specific location to capture
semantic dependencies from other locations. For the example
Math 79, when a patch is generated at the first buggy
location, it is provided as a context to generate a correct patch
for the second buggy location.

III. TRAINING DATASET CURATION

We focus on fixing functional errors for Java programs that
may require multiple fix locations within a single source file.
Hence, our dataset collection targets Java programs that exhibit
functional errors paired with the correct fix.

A training dataset for APR contains pairs of buggy and
fixed code samples [15]. The datasets used by the existing
learning-based APR work, e.g., CodeBERT [16], and Co-
CoNuT [5],contain only a limited context for each bug (e.g.,
five lines above or below the buggy location). Hence, they are
unsuitable for our approach, which examines a larger context
to extract information to fix bugs. Hence, we curate a new
dataset that includes a larger surrounding context.

Fig. 3: Process of dataset creation.

Following prior work [11], [17] we employed a perturbation
model that generates buggy code from the correct code.



Given a project repository, the perturbation model applies a
perturbation rule to all possible source lines. From the mutated
repository, we extract the perturbation rule, line number,
perturbed line, and the surrounding context for each perturbed
source line. Those paired with the corresponding source line
make a training instance. Figure 3 shows the process overview.

TABLE I: Distribution of the training dataset among the
considered GitHub repositories

Project Stars Forks #Samples

finmath-lib 467 165 475843
Time4J 418 59 263159
htmlunit 815 162 178614
maven-doxia 26 41 36399
wro4j 471 106 39487
guava 49.4k 10.7k 560711
super-csv 518 139 10410
rhino 4k 818 206956

Total 1771579

We selected eight popular open-source Java projects as the
source for our dataset creation. We explicitly removed projects
listed in DEFECTS4J [10] to ensure no data leakage on the
evaluation. Table I lists the selected repositories and the count
of generated data samples in column “#Samples”. We create
two datasets, a single context, and multiple contexts. In the
single-context dataset, each buggy line is accompanied by
a single context with ten lines surrounding the buggy line.
Suppose the buggy line is L. Then, in the single-context
dataset, the context comprises source lines [L−5−L−1] and
[L+1−L+5]. Let’s call this context C0. For the dataset with
multiple contexts, we collect five more consecutive contexts
before and five more after the initial context C0, each with
ten lines. For example, context C−1 contains source lines
[L−10−L−5] and C−2 contains source lines [L−15−L−10],
whereas context C+1 contains source lines [L+5−L+10] and
C+2 contains source lines [L+10−L+15]. Hence, a buggy
line in the multiple-contexts dataset accompanies 11 contexts
altogether, {C−5, C−4, ..., C0, ..., C+4, C+5}.

IV. FUSIONREPAIR FRAMEWORK

One major limitation of current APR tools in creating multi-
line patches is the restriction on input length. This limits
the amount of code context from which the necessary bug-
fixing information can be extracted. To address this issue,
we propose adapting the Fusion-in-Decoder (FiD) sequence-
to-sequence (Seq-to-Seq) model for APR. The FiD model,
introduced by [12], is designed for open-domain question
answering and is capable of providing accurate answers by
gathering information from multiple passages related to the
given question. Unlike traditional Seq-to-Seq models, FiD
independently processes each passage using its encoder, ag-
gregates the resulting representations, and then feeds them to
the decoder to generate the answer. Our tool, FUSIONREPAIR,
adapts FiD as CODE-FID, enabling it to process multiple code

Fig. 4: Code-FiD

contexts to extract information for fixing multi-line bugs. The
Figure 4 shows the CODE-FID model.

As input, FUSIONREPAIR requires the buggy program PB,
set of buggy locations L, set of bugs B, the CODE-FID model
G, number of attempts R and the test suite T . PB has n buggy
lines. As output, our tool produces the set of plausible patches
P for the n bugs in B.

Algorithm 1: Patch Generation & Refinement.
Input : PB - buggy program, B - list of bugs, L -

list of buggy locations, G - CODE-FID model
, R - No.of attempts, T - test suite

Output: P ∗ - Plausible patch combination.
Config : m - Number of contexts

1 P ∗ ← null; n← length(B);
// Step 1 - Initial patch generation

2 for i = 1 to n do
3 Ci ← createContexts(B[i]);
4 Ii ← createEncoderInputs(B[i], Ci);
5 P [i]← G(Ii, k);
6 D ← createPatchCombinations(P );
7 for d ∈ D do
8 if is plausible(d,PB, T ) then
9 P ∗ ← d; return P ∗;
// Step 2 - Iterative Improvement

10 for r = 1 to R do
11 for i = 1 to n do
12 B̄i ← createNewBuggyCode(P [i]);
13 for j = 1 to k + 1 do
14 Ci

j ← createContexts(B̄i[j]);
15 Īij ← createEncoderInputs(B̄i[i], Ci

j);
16 P̄ ← G(Īij , r); P [i]← P [i] + P̄ ;
17 D ← createPatchCombinations(P );
18 for d ∈ D do
19 if is plausible(d,PB, T ) then
20 P ∗ ← d; return P ∗;

Algorithm 1 shows the general workflow of the proposed
framework. Let’s consider the bug B(i) at location i where
i ∈ 1, 2, ..., n. For B(i), we consider m number of contexts
Ci = {ci1, ..., cim} derived as described in Section III (See
line number 3 in Algorithm1). Using these contexts and B[i]
as inputs, create encoder inputs creates a set of inputs Ii =
{Ii1, ..., Iim} to be processed by the CODE-FID encoder. Each
input Iit , t ∈ {1, 2, ...,m} starts with a special token [BUG],
followed by the buggy line and its surrounding code lines, and
then the [CONTEXT] token, followed by one of the m contexts.
Figure 5 shows a sample input for Closure 123.



[BUG]
break;

}
case Token.HOOK: {
Preconditions.checkState(childCount == 3);
int p = NodeUtil.precedence(type);

Context rhsContext = Context.OTHER; /* buggy line */
addExpr(first, p + 1, context);

cc.addOp("?", true);
addExpr(first.getNext(), 1, rhsContext);
cc.addOp(":", true);
addExpr(last, 1, rhsContext);

[CONTEXT]
break;

}
case Token.REGEXP:
if (!first.isString() ||

!last.isString()) {
throw new Error("Expected children to be strings");

}
String regexp = regexpEscape(first.getString(), outputCharsetEncoder);
if (childCount == 2) {

add(regexp + last.getString());

Fig. 5: Sample Input for Closure 123.

The encoder in CODE-FID processes Iit independently to
produce a vector representation containing information related
to B[i] from the corresponding context cit. Next, all these m
number of vector representations are concatenated and fed
to the decoder to generate k candidate patches for B[i]. In
addition to these candidate patches, line deletion is considered
as an additional patch as it can be very helpful in solving
bugs that need multi-line patches. Suppose P denotes the set
of patches generated by FUSIONREPAIR for the n bugs in B
where |P | = n × (k + 1). Then using the combinations of
these candidate patches, create patch combinations function
create a set of (k + 1)n patches. Let this list be D such
that D = {d1, . . . , d(k+1)n}. We apply each of these patch
combinations, du to PB and identify the plausibility of each
du by executing the test suite T (See line 8). If any one of
the patch combinations is plausible, then we have found a
multi-line patch and we terminate the process. In Figure 6,
the process discussed in this paragraph is shown as Step -1.

Suppose we cannot find a plausible patch combination in
the previous step. Then for each bug B[i], we attempt to
improve the generated patches P [i] in an iterative manner
as these patches may be partially correct [1] and iterative
improvement might lead us to the correct complete patch. We
create a new set of derivative buggy codes B̄i corresponding
to B[i] by replacing the buggy line at L[i] with generated
patches P [i] (See line 13 of Algorithm 1). Thus the set
B̄i has elements b̄ij such that j ∈ 1, 2, ..., k + 1. Next, we
create a new set of inputs as described before and apply
CODE-FID to generate k number of patches. Suppose P i

j

denotes the set of improved patches for P [i, j] patch. After
generating improved patches for k + 1 initial patches in P [i],
we add these new improved candidate patches to P [i], where
P [i] = P [i]+P i

0+P i
1+...+P i

k+1. Then, similar to as described
in Step -1, we create patch combinations considering patches
for each bug in P . Finally, we evaluate the plausibility of each
patch combination by executing the test suite T . If we find a
plausible patch combination, we terminate the process. If not,
we carry out this for all the bugs in B̄i R times. In Figure 6,
the process discussed in this paragraph is shown as Step -2.

Algorithm 2: KT based Patch Generation
Input : PB - buggy program, B - list of bugs, P -

list of patches from Algo-1, G - CODE-FID
model , R - No.of attempts, T - test suite

Output: P ∗ - Plausible patch combination.
Config : m - Number of contexts

1 P ∗ ← null;
2 for i = 1 to n do
3 for q = 1 to n do
4 if q == i then
5 continue;
6 for j = 1 to k + 1 do
7 CP [q,j] ← createSingleContext(P [q, j]);

ÎiP [q,j] ←createEncoderInputs(B[i], CP [q,j]);
P̂ ← P i

q + G(ÎiP [q,j], k);
8 D ← createPatchCombinations([P [q, j], P̂ );
9 for d ∈ D do

10 if isPlausible(d,PB, T ) then
11 P ∗ ← d; return P ∗;

If the previous steps fail to generate a plausible patch
combination for B, FUSIONREPAIR attempts to generate can-
didate patches by transferring knowledge between generated
patches, a process which we call knowledge transfer based
patch generation. Let’s consider B[i]. We first generate a new
set of inputs, Îi, for the CODE-FID encoder, where each of
these inputs starts with the special token [BUG], followed by
the B[i] and its surrounding code lines, and then the [CONTEXT

] token, followed by a context CP [q,j] which comprises of
P [q, j] and its surrounding code lines where, q ∈ 1, 2, ..., n and
q ̸= i and j ∈ 1, 2, ..., k. We feed each of these to the CODE-
FID encoder and its output is fed to the decoder to generate
a set of candidate patches P̂ for B[i] that captures knowledge
transferring from P [q, j]. Then we create patch combinations
considering P [q, j] and P̂ and evaluate the plausibility of each
patch combination by executing the test suite T . In Figure 6,
the process discussed in this paragraph is shown as Step -3.

V. EVALUATION METHODOLOGY

A. Evaluation Setup

We adopt a CodeT5-small 60M parameter model hosted by
Salesforce on the HuggingFace platform. First, we fine-tune
the model using our single-context data set over 3 epochs with
a batch size of 30 using the Adam optimizer and a learning
rate of 2× 10−5. Next, the fine-tuned model is applied to the
FiD architecture and trained using a multi-context dataset with
a context size of 11 over 1000 steps with a single batch size.
We conduct our experiments using the NVIDIA Tesla T4.

The input to an encoder in FiD is similar to Figure 5.
Before the input is provided to CodeT5-small, the buggy line
is replaced with the token < extra id 0 >. This token is
used because CodeT5-small is pre-trained for code generation
tasks where < extra id 0 > is given.



Fig. 6: Step-1:Initial patch generation.Step-2:Patch Refinement.Step-3:Knowledge transfer based patch generation.

B. Evaluation Dataset

For the evaluation, we used the DEFECTS4J [10] bench-
mark. Existing APR tools are evaluated on the DEFECTS4J
v1.2.0 and v2.0.0. DEFECTS4J v1.2.0 has 391 bugs over 6
projects, and v2.0.0 has 835 bugs over 17 projects. For a
fair comparison with other existing tools, we evaluated the
FUSIONREPAIR over those two versions. Testing samples are
derived from the DEFECTS4J by identifying buggy lines with
their fixes and gathering contexts surrounding the buggy lines.
Two evaluation datasets are created similar to the training
datasets, one containing a single context for assessing the
CodeT5 model, and the other containing 11 contexts to eval-
uate the FUSIONREPAIR tool.

C. Research Questions

• RQ1: How does FUSIONREPAIR perform against existing
DL-based APR models on DEFECTS4J?

• RQ2: What is the contribution of each component to the
overall performance of FUSIONREPAIR?

• RQ3: How does the prediction length impact the efficacy
of FUSIONREPAIR?

• RQ4: Does patch refinement improve the efficacy of
FUSIONREPAIR?

D. Experimental Methodology

1) RQ1: Comparison with SOTA: Among existing APR
tools, we select those that have multi-line repair capabilities
for Java programs. Namely we select DLFIX [4], COCONUT
[5], CURE [6], DEAR [2], HERCULES [9], and ITER [1]
to perform the comparison with FUSIONREPAIR. The results
for each tool are the reported values obtained from their
respective publications. In our evaluations, following prior
work we assume perfect fault localization [18], where the exact
fix location of the bug is provided for evaluation.

ITER was evaluated on DEFECTS4J v2.0.0 and the rest
of the tools were compared using DEFECTS4J v.1.2.0. For
comparison with ITER, using perfect fault localization, we
executed ITER on a subset of bugs from the total pool of 835
bugs to ensure fairness. Bugs meeting the following criteria
were filtered out to maintain a fair comparison between ITER
and FUSIONREPAIR.

• Bugs that do not belong to the 10 projects used in ITER
evaluation (i.e. Mockito, JacksonDatabind)

• Bugs that include at least one faulty location spanning
more than one line of code. The input for ITER is derived
from the output of GZoltar [19] after fault localization.

• Bugs where at least one faulty location wasn’t accu-
rately identified using the fault localization technique. If
GZoltar fails to provide the correct faulty locations as
input to the repair tool.

• Bugs which has more than two buggy locations.

After filtering, the remaining 199 bugs were used to conduct
the evaluation. The filtered bugs are executed on a modified
version of ITER (ITER*) allowing to generate patches for
bugs using perfect fault localization. The modifications are:

• Upon fault localization, remove the incorrect suspicious
lines and retain only those that match perfect localization.

• Perform fault localization once initially, then focus on
fixing the most suspicious lines first.

• After generating patches, check for an exact match to the
required fix. If found, mark the buggy location as fixed
and proceed to the next.

A comparison between ITER* and FUSIONREPAIR is con-
ducted with no re-attempts while generating 50 predictions per
buggy location.

2) RQ2: Ablation Study: This section examines the contri-
bution of each step of FUSIONREPAIR for overall performance
on DEFECTS4J 2.0.0. The considered steps are as follows:

• Fine-tuning pre-trained CodeT5-small model
• Integrating Fusion in Decoder (FiD) architecture
• Manually introducing line deletion patch
• Two iterations of refinement on generated patches.
• Knowledge transfer-based patch generation

We selected CodeT5-small as the starting model due to
its existing code-generation capabilities, first assessing its
inherent ability to fix bugs. The buggy line is replaced with
the <extra_id_0> token, aligning with CodeT5-small’s
pretraining to generate code at this token. We then fine-
tune the model using our single-context dataset created from
perturbations.

FiD extends input length by dividing it into chunks, each
processed by separate encoders that capture information from
these chunks. The outputs are combined and fed to the decoder,
enabling FUSIONREPAIR to make predictions based on this
combined input. Incorporating FiD into FUSIONREPAIR en-
hances its ability to handle lengthy inputs, hence we compare
results before and after adding FiD to assess its impact.

3) RQ3: Best Configuration for FusionRepair Perfor-
mance.: Evaluation is conducted for different prediction
lengths 5, 10, 20, 30, 40, and 50. The outcomes are analyzed
to identify the most suitable prediction length.



VI. EVALUATION RESULTS

A. RQ1: Comparison with SOTA

We evaluated FUSIONREPAIR on both DEFECTS4J v1.2.0
and v2.0.0 for both plausible patch generation and correct
patch generation (using exact matching). On DEFECTS4J
v1.2.0 FUSIONREPAIR generates a plausible patch for 42
single-line bugs and 25 multi-line bugs. However, considering
the exact match to the developer-generated patch, the correct
number of fixes are 31 single-line bugs and 19 multi-line bugs.
Similarly, on DEFECTS4J v2.0.0 FUSIONREPAIR generates a
plausible patch for 81 single-line bugs and 46 multi-line bugs,
totalling to 127 bugs. Using exact matching as the correctness
criteria, FUSIONREPAIR generates the correct patch for 55
single-line bugs and 28 multi-line bugs.

Since FUSIONREPAIR assumes perfect fault localization,
we compare its efficacy with the baseline tools using values
reported in prior work [1], [2]. We analyzed the results
of different baseline tools on the number of correct fixes
using exact matches for multi-line bugs in DEFECTS4J v1.2.0
dataset under perfect fault localization setting. DEAR and
HERCULES report the most number correct multiline patches
with 16 and 12 respectively, while the rest of the tools (i.e.
CURE, COCONUT, and DLFIX) do not generate correct
fixes for more than 10 bugs. Notably, we exclude ITER
in this comparison because the authors do not report their
results for DEFECTS4J v1.2.0 on perfect fault localization
setting. FUSIONREPAIR outperforms our baseline tools with
19 correct fixes.

Comparison with the recent state-of-the-art tool ITER [1]
on DEFECTS4J v2.0.0. We modified ITER under the same
configurations on the bugs filtered out according to the process
mentioned in Section V-D1. Our modified ITER generated the
correct patch for 18 bugs with 16 single-line and 2 multi-line
patches. FUSIONREPAIR generated correct patches for 33
bugs with 26 single-line and 7 multi-line patches.

SOTA Comparison: Our experiment results on DEFECTS4J
v1.2.0 and v2.0.0 show FUSIONREPAIR outperforms the
existing state of the learning-based repair tools.

B. RQ2: Ablation Study

We evaluate the contribution of each component in FU-
SIONREPAIR for the overall efficacy on DEFECTS4J v2.0.0.
Table II summarizes the number of bugs for which the correct
patch was generated by FUSIONREPAIR, by disabling a single
component. Each row captures the number of bugs that are
correctly fixed with a specific configuration. Two consecutive
rows capture the contribution of a single component indicated
in the column “Variations”.

Pre-trained CodeT5-small model alone was only able to fix
3 number of bugs correctly. Fine-tuning using our generated
data set, helps to improve the number from 31 single-line and
8 multi-line patches. Using a FiD architecture has allowed
FUSIONREPAIR to capture information from a larger context

TABLE II: Impact of each component of FUSIONREPAIR for
the overall efficacy on DEFECTS4J v2.0.0

Variations Correct Fixes

Model F D R KT Single Multiple

Mp ✗ ✗ ✗ ✗ 3 0
Mf ✗ ✗ ✗ ✗ 31 8
Mf ✓ ✗ ✗ ✗ 41 8
Mf ✓ ✓ ✗ ✗ 51 18
Mf ✓ ✓ ✓ ✗ 55 20
Mf ✓ ✓ ✓ ✓ 55 28

F: FiD architecture, D: deletion operator, R: re-attempts, KT:
Knowledge Transfer-based patche generation, Mp: pre-trained
CodeT5-small, Mf : fine-tuned CodeT5-small

and fix more bugs. Providing a larger context using the FiD
architecture mentioned in Section IV, improves the number
of correctly fixed single-line bugs to 41. Adding a deletion
operator for the repair generates fixes for 51 single-line and
18 multi-line bugs. Refining previously generated patches by
re-iterating allows FUSIONREPAIR to improve the efficacy
further. Lastly, knowledge-based patch generation allows FiD
architecture allows FUSIONREPAIR to correct and fix 55
single-line bugs and 28 multi-line bugs.

Ablation Study: Each component in FUSIONREPAIR sig-
nificantly contributes towards the overall efficacy.

C. RQ3: Impact of Prediction Length

We evaluate the impact of the maximum prediction length
parameter of CodeT5-small model in FUSIONREPAIR, by
varying the values and analysing the overall efficacy. Figure 7
plots the efficacy for single-line fixes and multi-line fixes,
against variation of maximum prediction length. Efficacy is
measured in terms of a number of bugs for which the correct
patch (i.e. exact match) was found. We varied the maximum
prediction length but kept the number of return sequences fixed
to 50.

Fig. 7: Impact of prediction length for the first attempt.

Increasing the maximum prediction length from 5 to 30
drastically increases the number of bugs that can be fixed
correctly for both single-line and multi-line patches. Increased
prediction length allows the model to generate more patches
that correctly fix the bug. This is expected as the correct patch
may require a larger patch, which is not generated with a
more restricted configuration. However, increasing from 30



to 50, we observe a drastic change in the effectiveness with a
declination in the number of bugs that are correctly fixed. This
implies that increasing the prediction length is not necessarily
effective, as the prediction length is larger the prediction
accuracy gets lower. The optimum results we observed is at a
maximum prediction length of 30, with 51 single-line bugs and
20 multi-line bugs being correctly fixed by FUSIONREPAIR.

Impact of Prediction Length: Varying the prediction
length impacts the efficacy of the model, it is a trade-off
between generating a high number of patches that are small
in size vs a low number of patches that are larger in size.

D. RQ4: Impact of Patch Refinement

We analyze the effect of the iterative patch refinement step
in FUSIONREPAIR. We attempted to refine partially correct
patches for two iterations for bugs in DEFECTS4J v1.2.0
and v2.0.0, as summarized in Table III. Column “Correct
Fixes” captures the number of bugs that are correctly fixed by
generating a patch identical to the developer-provided patch
for each version of DEFECTS4J. Column “Configuration”
captures the variation from no refinement to 2 iterations of
patch refinement.

TABLE III: Improvement using Patch Refinement

Configuration Defects4J v1.2.0 Defects4J v2.0.0
r-0 r-1 r-2 r-0 r-1 r-2

Single Line 29 29 31 51 52 55
Multi Line 13 15 19 20 23 28
Total 42 44 50 71 75 83

Note: r-n - n no.of re-attempts.

Iteratively refining partially correct patches helps to improve
the overall efficacy from 42 bugs to 50 bugs in v1.2.0, and
from 71 bugs to 83 bugs in v2.0.0. Significant improvement
can be observed for multi-line fixes in both versions of
DEFECTS4J.

1 // Option.java file
2 public class Option implements Cloneable, Serializable {
3 ...
4 /** the type of this Option */

5 private Class type = String.class;

6 private Class type;

7 ...
8 }
9

10 // OptionBuilder.java file
11 public final class OptionBuilder {
12 private static void reset(){
13 ...
14 longopt = null;

15 type = String.class;

16 type = null;

17 ...
18 }
19 }

Fig. 8: Patch Refinement Example.

Figure 8 shows the correct patch generated by FUSION-
REPAIR for the bug Cli 34. The patch is generated in two
iterations of refinement. The first iteration generated a patch at

Line 7 with private Class type = Object.class.
Second iteration of refinement re-corrected the patch from
Object.class to String.class.

Impact of Patch Refinement: Iterative patch refinement
can transform partially correct patches into correct patches.
Thereby improving the overall efficacy with a significant
margin.

VII. RELATED WORK

Decades of research led to the evolution of APR through
different stages of APR techniques such as search-based [20],
[21], template-based [22], constraint-based [23], [24], and
learning-based techniques [5], [6]. Several excellent surveys
summarize these techniques [25], [8].

Learning-based APR: Learning-based APR techniques
have progressed significantly with the integration of Natural
Language Processing (NLP) and Neural Machine Translation
(NMT) methods [26]. CoCoNuT [5] introduced a CNN-
based encoder architecture that also employs a context-aware
NMT architecture, similar to DLFix [4]. Prior work also
captured code structure features, leading to techniques that
utilize Abstract Syntax Tree (AST) based representations.
DLFix [4], DEAR [2], HOPPITY [27], and CODIT [28] are
few examples. TFix [29] used a pre-trained natural language
model called Text-to-Text Transfer Transformer (T5) [30].
TFix approaches coding error correction as a text-to-text
prediction task. Following TFix’s introduction of the text-
based T5 model to APR, many tools have since adopted T5.

Multi-Line Repair Prior work has proposed various meth-
ods to generate multi-line patches [23], [3], [2], [1]. HER-
CULES [9] identifies evolutionary siblings (similar code
locations) to address particular bug types. DeepFix [3] focuses
on fixing common programming errors by addressing one
buggy line at a time, moving to the next line only after the
previous one is repaired. ITER [1] uses an iterative approach
that first localizes faults, selects the most suspicious line, and
then generates and applies multiple candidate patches. The
process repeats with fault localization and patch application
until all tests pass, indicating a plausible fix. Recent iterative
techniques offer promise for multi-line fixes, yet they still face
challenges in capturing dependencies across patches.

Context Awareness SequenceR [4] captures context by
concatenating buggy and surrounding lines, but this in-
creases input length and introduces noise. CoCoNuT [5]
and CURE [6] use separate encoders for buggy lines and
context, with CURE’s context extending to the entire buggy
method. Izacard et al [12] introduced the Fusion in Decoder
(FiD) architecture to handle extensive input in sequence-to-
sequence models, enhancing context utilization by capturing
evidence across multiple passages. In FiD, each passage is
encoded independently and combined in the decoder for joint
processing, optimizing knowledge fusion between encoder and
decoder components. This model is especially effective for
tasks requiring large context, like open-domain question an-
swering. Building on FiD, VulMaster [31] adapts this approach



for Automatic Vulnerability Repair(AVR) in C/C++ codebases,
integrating inputs from code segments, ASTs, and insights
from the Common Weakness Enumeration(CWE) database to
manage complex, multi-source context effectively.

VIII. CONCLUSION

In this work, we introduce FUSIONREPAIR, a transformer-
based iterative program repair technique that uses a larger con-
text window. We develop a novel fusion technique to address
the context limitation in existing state-of-the-art repair mod-
els. Using the increased context information, FUSIONREPAIR
was trained in knowledge transfer-based patch generation.
Our experimental results on DEFECTS4J v.1.2.0 and v2.0.0,
show that FUSIONREPAIR outperforms existing state-of-the-
art techniques by a significant margin.

Artifacts: All our artifacts are released to the community.
https://anonymous.4open.science/r/FusionRepair-F028
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