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Abstract—Automated Program Repair (APR) can assist de-
velopers by automatically generating patches for buggy code.
However, as recent techniques leverage deep learning models,
developers do not know why the model generated a particular
patch. Existing Explainable AI (XAI) techniques, such as SHAP,
can be applied to APR, however, their complexity raises questions
about whether developers find such explanations understandable.
In this work, we develop a novel framework SCHOLIA, with two
extensions to feature attribution methods to make them more
understandable to the developers. First generates a text explana-
tion based on attribution scores. Second creates a visualization
capturing the transformation of the patch based on the impact
of code tokens, named patch transformation.

We evaluated the proposed new two explanations types com-
pared to SHAP, using a user survey. The survey received
responses from 106 participants. Accordingly, 68.9% (P < .05)
and 64.2% (P < .05) of participants agreed that text explanation
and patch transformation methods are easy to understand, while
only 17.9% (P < .05) agreed with the original SHAP explanation.
The survey responses indicate, with statistical significance, that
our extensions to SHAP are easier to understand than the original
SHAP explanations.

Index Terms—Explainable Artificial Intelligence, Automated
Program Repair, Deep Learning

I. INTRODUCTION

Fixing software bugs manually is a monotonous and time-
consuming task. Automated Program Repair (APR) addresses
this issue by automatically fixing bugs [1]. While recent
learning-based APR tools have achieved state-of-the-art re-
sults [2], [3] they are based on complex Deep Neural Networks
(DNNs) such as transformers. These DNNs, particularly large-
scale models like BERT [4] or GPT [5] are complex and black
boxes [6], making it difficult for users to understand why such
a model generates a particular patch for a given buggy code. In
contrast, in manual program repair, the developer can explain
why the patch was implemented to fix a bug.

Several empirical studies [7], [8] have demonstrated that
the developers expect explanations for the automatically gen-
erated patches to understand the underlying reasons. Another
study [9] shows that developer productivity isn’t significantly
improved by automatically generated patches alone, as de-
velopers must understand the defects and how the patches
address them. Thus, when using APR tools, developers need
explanations for the model’s patch choices.

The eXplainable Artificial Intelligence (XAI) techniques de-
veloped in the AI research community can solve this problem
by allowing users to gain insights into the rationale of AI sys-
tems’ decisions. While there are various XAI techniques, the
feature attribution methods explain the relationship between
input and output of the model by indicating how much each
input feature contributed to the model decision for a given
instance (e.g., LIME [10], SHAP [11], Integrated Gradients
[12]). When applied to APR tools, these methods will show
how each token in the buggy code has influenced each token
in the generated patch. However, existing research has shown
that the explanations generated by these feature attribution
methods, such as SHAP, are hard to comprehend for the
users [13], [14]. Hence, it is imperative to develop a framework
for APR tools that can generate more human-understandable
explanations rationalizing decisions of APR tools.

This paper introduces SCHOLIA, a novel XAI framework for
APR tools. It is developed based on existing feature attribution
methods and offers two types of explanations: textual and
patch transformation explanations, which are easily understood
by the developers even if they do not have Machine Learning
(ML) expertise. The textual explanations provide a natural
language description for the rationale of the patch generated
by an APR tool. To generate text explanations, SCHOLIA
incorporates the syntactic structures and semantics in program-
ming languages to generate more meaningful explanations for
APR tool decisions. The patch transformation explanations
demonstrate how the top-k influential tokens in the buggy code
impact the patch. SCHOLIA can generate explanations based
on any existing feature attribution methods for any learning-
based APR tool, irrespective of the base model.

We evaluate the effectiveness of the explanations generated
by the proposed XAI framework compared to existing feature
attribution-based explanations and understand the developer’s
perspective of the explanations for patches generated by APR
tools, we conduct a user survey. For this analysis, we apply
SelfAPR [15] on bugs from the Defects4J dataset [16] and use
SHAP[11] as the feature-attribution-based explanation method.
The results of the survey indicate that the majority of the
users find that text explanation (68.9%, P < .05) and patch
transformation (64.2%, P < .05) are easier to understand than
the original SHAP explanation (17.9%, P < .05).



To summarise, the contributions of this research are:
• To the best of our knowledge, this is the first work to

apply XAI for learning-based APR tools and reports its
usefulness.

• Develop a new XAI framework that extends exist-
ing feature-attribution-based explanation methods for
learning-based APR tools.

• A user survey to evaluate the effectiveness of the expla-
nations generated by the proposed XAI framework and
understand the developer’s perspective of the explanations

II. MOTIVATIONAL EXAMPLE

Let’s consider the bug Cli 28, from the Defects4J dataset
[16], shown in Listing 1. For brevity, only the necessary parts
of the code have been included here.

1 protected void processProperties(Properties properties) {
2 for (Enumeration e = properties.propertyNames(); e.hasMoreElements();) {
3 if (!cmd.hasOption(option)) {
4 if (opt.hasArg()) {
5 } else if (...) {
6 - break
7 + continue
8 }
9 ...

Listing 1: Developer Patch for Cli 28 (Defects4J)

This bug is from Apache Commons CLI1, a library for
parsing command line options passed to programs and it is
in a class called Parser. This class builds an instance of
CommandLine, a class that holds the parsed arguments. In
Parser::parse, the method processProperties is called with
the properties argument, which consists of the command
line option key-value pairs. This method is supposed to set
the values of Options using the values in the properties

parameter. The for loop in line 2 iterates through the
properties and processes each one. In the case that the current
option has no argument, and the value is none of ”yes”, ”true”,
or ”1”, then the current option should not be added to the
CommandLine (as described in the comment on lines 10-11).
However, in the buggy version of the program, this Parser

stops parsing the arguments at this point, which is incorrect.
To fix this bug, suppose we use one of the state-of-the-art

APR tools, SelfAPR [15]. SelfAPR generates the correct patch
for this bug, replacing break; with continue; in Line 7 as
shown in Listing 1. Applying this patch to the buggy code
fixes the bug. Looking at the buggy code, we can see that the
break; in line 7 terminates the loop as soon as the control
reaches that conditional block. However, that would lead to
the rest of the code not being processed, which is incorrect
behavior. The generated patch fixes this by continuing to the
next iteration with continue; instead of breaking out of the
loop with the break;. That way, we do not skip processing the
rest of the arguments and in fact, continue iterating through
the properties until completion.

Next, we apply SHAP, an existing feature-attribution
method, to understand SelfAPR’s rationale for generating the
patch. The output of SHAP is shown in Figure 1a. The
SHAP explanation for text-to-text models is in the form of

1https://commons.apache.org/proper/commons-cli

an interactive HTML page. At the top, we have the patch
generated by the model. At the bottom, we have the input to
the model, which is in the format expected by SelfAPR [15]
requiring markers to indicate the buggy section ([BUGGY]), the
context ([CONTEXT]), the class ([CLASS]), etc. The input and
output are split into tokens based on the tokenization of the
APR model. Figure 1a shows the view when we click on the
continue token in the output, which shows us the attribution
scores for that output token. The input tokens are highlighted
based on their attribution scores. Positive attribution scores
are shown in red, while negative ones are in blue. Positive
attributions mean those input tokens have caused an increase
in the probability that the APR tool generates the particular
output token. In contrast, negative attributions mean those
input tokens have caused a decrease in the probability. The
darker the color, the higher the attribution. In our example,
the highest positive attribution is for the opt near the end of
the input. The line with arrows between the input and output
shows these attribution scores. Tokens with positive attribution
are on the right, and those with negative attribution are on
the left. They are arranged in increasing order and decreasing
order, respectively. Hovering over the tokens would also show
the attribution score for that token. The line shows how all
these attribution scores push the SHAP value from the base
value to the final value. Figure 1a shows the continue input
token was most impacted by the opt at the end of the context.

The main limitation of SHAP explanations is that users
may find them hard to interpret due to their complicated
representation, especially for text-to-text models. A developer
must be instructed and trained to interpret a SHAP explanation.
Even then, if the explanation in Figure 1a and the patch is
shown to a developer who is working on this particular bug,
they would likely not be able to grasp all the information that
is presented in this explanation and make a decision.In our
example, the patch contains just one token. However, for a
multi-token patch, the SHAP explanation attributes each token
in the buggy code to each token in the patch, resulting in
n×m values, with n being the tokens in the buggy code and
m those in the patch. This complexity increases the cognitive
load for developers, who might prefer an overall explanation
of why the APR tool generated the patch, rather than detailed
attributions like those provided by SHAP.

In contrast, an explanation in natural language is easier to
comprehend and places less mental burden on the developer.
For example, consider the textual explanation shown in Fig-
ure 1b for the bug Cli 28.It offers a straightforward text
explanation for the APR model’s patch generation, identifying
the specific part of the input buggy code—here, the condition
in the else if statement—as the cause.

An alternative explanation that can be given is to show step-
by-step how the top-k tokens impact the patch generation. The
patch transformation-based explanation shown in Figure 1c
indicates the impact on the patch from the top-k most im-
pactful tokens in the buggy code. Initially, without the top
4 most impactful tokens, the patch is continue;. However,
when we re-introduce the 3rd most impactful token, we can

https://commons.apache.org/proper/commons-cli


[0]
outputs

continue ;

-14-15-16-17 -13 -12 -11-14.3457
base value

-13.0944
fcontinue(inputs)

opt();▁testPro▁[BUG▁pertaddOptiY]▁[▁AsCONTEbreak;▁▁▁lagsBUGG▁yOptionFvalue)ongnoreCaseelseequalsIgnoreCase(value))) ( [CLASSFE]equalsIgnoreCase(value)▁||"1".] Err ortrue".tion (▁ifbreak▁ailedF sXTequalsI▁||""yes".▁▁▁!▁er

inputs
▁[BUG]▁[BUGGY]▁break;▁[FE]▁AssertionFailedError▁testPropertyOptionFlags▁[CONTEXT]▁▁▁▁else▁if▁(!

("yes".equalsIgnoreCase(value)▁||"true".equalsIgnoreCase(value)▁||"1".equalsIgnoreCase(value)))▁▁[BUGGY]▁break;▁[BUGGY]
▁▁cmd.addOption(opt);▁▁▁▁[CLASS]

(a) Original SHAP Explanation

This patch was generated because of the condition (!("yes".equalsIgnoreCase(value) ||
"true".equalsIgnoreCase(value) || "1".equalsIgnoreCase(value))) {}

in the else if statement

(b) Text explanation

    }
  }
}
else if (!("yes".equalsIgnoreCase(value) 
      || "true".equalsIgnoreCase(value)
      || "1".equalsIgnoreCase(value)))
{
  break;
}

cmd.addOption(opt);

continue; continue;

} else if("yes".equalsIgnoreCase(value)|
||"true".equalsIgnoreCase(value)); break; {

continue;

Without top 4 tokens After adding 4th most important token After adding 3rd most important token

After adding 2nd most important token After adding most important token

    }                                    
  }
}
else if (("yes".equalsIgnoreCase(value)
      || "true".equalsIgnoreCase(value)
      || "1".equalsIgnoreCase(value)))
{
  break;
}

cmd.addOption(opt);

} else if("yes".equalsIgnoreCase(value)|
||"true".equalsIgnoreCase(value)); break; {

    
  }                                      
}
else if (("yes".equalsIgnoreCase(value)
      || "true".equalsIgnoreCase(value)
      || "1".equalsIgnoreCase(value)))
{
  break;
}

cmd.addOption(opt);

    
  
}                                        
else if (("yes".equalsIgnoreCase(value)
      || "true".equalsIgnoreCase(value)
      || "1".equalsIgnoreCase(value)))
{
  break;
}

cmd.addOption(opt);

    
  

else if (("yes".equalsIgnoreCase(value)
      || "true".equalsIgnoreCase(value)
      || "1".equalsIgnoreCase(value)))
{
  break;
}

cmd.addOption(opt);

Buggy code

Patch

Buggy code

Patch

(c) Patch transformation

Fig. 1: Comparison of SHAP explanation and our proposed explanations

see the patch changes to an incorrect patch. Finally, when we
re-introduce the most impactful token, the patch changes to
the correct one: continue;.

Hence, in this work, we focus on improving the under-
standability of existing feature-attribution-based methods (i.e.
SHAP [11]) by generating additional explanations with con-
sideration given to the syntactic and semantic structure of the
code, in contrast to the original attribution based explanation.

III. SCHOLIA FRAMEWORK

This section describes the proposed SCHOLIA XAI frame-
work for APR tools. The objective of the proposed framework
is to generate explanations that are easier to understand
and more useful for software practitioners by extending the
existing feature-attribution-based explanation methods.

Suppose M is a learning-based APR tool. It accepts an input
buggy code X = x1, x2, .., xn with n tokens and produces a
patch Y = y1, y2, ..., ym with m tokens. Let F be a feature-
attribution-based explanation method. SCHOLIA accepts M
and F and produces two types of explanations text expla-
nations denoted as T and patch-transformation explanation
denoted as P . The overview of the framework is shown in
fig. 2. On the left, we show the text explanation generation.
On the right, we show the patch transformation. Next, in
Section III-A, we describe how we generate the text-based
explanation, and in Section III-B, we explain how we generate
patch-transformation explanations.

A. Text Explanation

The inputs to the text explanation generation algorithm are
the APR tool M, the explanation method F and the buggy

code X . Given the buggy code and the APR tool, the feature-
attribution-based explanation method outputs the attribution
matrix A ∈ Rn×m containing attribution of each input token
xi ∈ X with respect to each output token yj ∈ Y . Then,
we aggregate (i.e. aggregate()) the feature attributions by
taking the summation of attributions of each input token. Let
the output be Ā ∈ Rn. āi ∈ Ā indicates the impact of xi on
the entire patch.

Algorithm 1: Text explanation algorithm
Input: Learning-based APR Tool M, Buggy code X ,

Feature-attribution-based explanation method F
Output: Text explanation T

1 A ← F(M,X) ;
2 Ā ← aggregate(A) ;
3 amax ← max (Ā);
4 Nmax ← getASTNodeWithToken(X, amax) ;
5 T ← applyTextTemplate(Nmax) ;
6 return T ;

Next, we extract the token with the highest attribution value,
ak. Using, use the Abstract Syntax Tree (AST) of the buggy
code X , we then translate the token ak into an AST node
ok. The method get_AST_node_with_token() takes as
input the buggy code X and the interested token ak. The buggy
code X is parsed into an AST tree and using the positional
information of ak, we locate the corresponding AST node ok.
Finally, we apply the relevant text template to build the fi-
nal text explanation T . Procedure apply_text_template
takes as input an AST node, and based on the AST node
type, a predefined template will be used to generate the text
description.
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Fig. 2: Text explanation and patch transformation algorithm

1 public static boolean equal(GeneralPath p1, GeneralPath p2) {
2 PathIterator iterator1 = p1.getPathIterator(null);
3 - PathIterator iterator2 = p1.getPathIterator(null);
4 + PathIterator iterator2 = p2.getPathIterator(null);
5 ...
6 }

Listing 2: Chart 11 (Defects4J)

To illustrate further, we use Chart 11 bug from the De-
fects4J [16] benchmark. Listing 2 shows the code for Chart
11. The bug is from a popular Java library JFreeChart. The
equal method compares two polygons via the GeneralPath

class. Here, the bug is in line 3, where instead of getting the
path iterator for the second path, it gets the path iterator for
the first path again. The correct patch is to change line 3 to
PathIterator iterator2 = p2.getPathIterator(null);.

In our implementation, we use SelfAPR [15] as the state-
of-the-art APR tool and SHAP [11] as the feature-attribution-
based explanation method since it is a widely used XAI
method. We chose SelfAPR as it is one of the state-of-the-
art APR tools, it fixes a significant proportion of bugs [15],
and it can generate a patch quickly (under a few seconds at
most), which is essential for us to be able to apply an XAI
method, as XAI methods such as SHAP query the model many
times to build the final explanation [11]. For this particular
bug, SelfAPR [15] generates the correct developer patch, and
Listing 3 depicts our text-based explanation.

This patch was generated because of the method invocation p1.getPathIterator

Fig. 3: Text Explanation

Referring back to our motivational example Cli 28
bug shown in Listing 1, based on the aggregation, we
can identify the ! in the else if condition (line 6)
has the highest attribution. The AST node containing
it is the condition node in the else if. Hence, the
explanation from our algorithm is This patch was generated
because of the condition `(!(”yes”.equalsIgnoreCase(value)
——”true”.equalsIgnoreCase(value) ——”1”.equalsIgnore-
Case(value)))` in the else if statement. Compared to the
complicated SHAP explanation shown in 1a, this explanation
is much easier to digest and speaks in terms of code, which
will be familiar to the developer using the APR model.

B. Patch Transformation

Similar to the text explanation generation described in Sec-
tion III-A, given the APR tool M, the explanation method F
and the buggy code X , Algorithm 2 generates an explanation
as a patch transformation.

Algorithm 2: Patch transformation algorithm
Input: APR Tool M, Buggy code X , explanation method F ,

Number of tokens k
Output: A sequence of buggy-fixed code pairs (B, Y )

1 A ← F(M,X) ;
2 Ā ← aggregate(A) ;
3 X̄ ← get_top_k(Ā,X, k) ;
4 B0 ← [X]; Ȳ ← [] ;
5 for i = 1 to k do
6 Bi ← remove_token(Bi−1, x̄i) ;
7 end
8 for i = 0 to k do
9 Yi ← M(Bi) ;

10 end
11 return reverse B, reverse Ȳ ;

Algorithm 2 also calculates the aggregated attribution āi
for each token x ∈ X . Next, we extract the top-k tokens
with the highest aggregated attributions. Suppose this set of
tokens is denoted as X̄ = x̄1, x̄2, ..., x̄k ⊂ X , where the
aggregated attribution decreases from x̄1 to x̄k. Next, we
remove the tokens in X̄ from the buggy code X one by one
in the descending order of aggregated attribution value. This
results in a set of new input buggy codes B = B1, B2, ..., Bk.
For example, B1 = X − x̄1 and B2 = X − {x̄1, x̄2}
and so on. After that, we input these buggy codes to the
APR tool M and generate the corresponding patches Ȳ =
YB1

, YB2
, ..., YBk

. Finally, we formulate the sequence of these
input-output pairs (Bk, YBk

), (Bk−1, YBk−1
), ..., (X,Y ) as the

patch-transformation explanation. This sequence shows how
adding top-k tokens one by one in the ascending order of
feature attribution transforms the generated patch.

Referring back to our motivational example Cli 28, the
! in the code has a high attribution score, that should mean
that removing it should have a significant effect on the patch
generated by the model. We can take the original input,
remove the most impactful tokens, and then get the model



output. From here, we can add those tokens back, one by
one, obtaining the model output at each step as shown in
Algorithm 2. With this list of patches, we can see how the
patch transforms by re-introducing these supposedly impactful
tokens. Note that the tokens we consider are Java tokens and
not the tokens that are used by the model itself. Most of these
APR models use subword tokenization [15], [3], [17], so we
combine those tokens to get Java tokens.

IV. USER SURVEY

We conduct a user study to evaluate the effectiveness of the
explanations generated by the proposed XAI framework, text
explanations, and patch transformation explanations compared
to the feature attribution-based explanations. In our evaluation,
we use SHAP [11] as the baseline feature-attribution-based
explanation method. The main research questions to which
we try to find answers are as follows (Figure 4):

RQ1: According to our participants, which explanation type is
suitable for understanding APR tool generated patch?

RQ2: How do different characteristics of explanation types
affect the user preference?

RQ3: How do different demographic characteristics affect the
user preference for explanation types?

Symbol Question
Q1 gender
Q2 age group
Q3 designation
Q4 Java programming experience
Q5 machine learning experience
Q6, Q8, Q10 qualitative analysis of each explanation type
Q7, Q9, Q11 additional feedback for each explanation type
Q12 ranking of three explanations
Q13 suggestions for new type of explanation

TABLE I: User Survey Questions

User Survey Design. The user survey consisted 13 ques-
tions in total. The first part contained 5 questions to collect
demographic information about participants. The second part
was focused on capturing user preference on three explanation
types. It included 4 closed-ended questions and 4 open-ended
questions. For closed-ended questions, we used multiple-
choice questions, Likert scales, and ranking questions. The
question structure is shown in Table I. The first section in-
cluded demographic questions (Q1-Q5) to confirm participant
suitability and gather factors like gender, age, designation,
Java experience, and ML experience that could influence the
results. At the beginning of the second part of the survey, users
were given instructions on how to read and understand each
explanation type. Next, three Java programming bugs (Chart-
1, Chart-11 & Cli-28 from Defects4J dataset) were shown
along with the correct patch generated by an APR tool (i.e.
SelfAPR [15]) and a small description of the bug. For each
bug, three explanation types were shown.

The users had to rank the three explanation types according
to the usefulness of understanding what caused the model to
generate the patch (Q12). If the users had any other ideal
explanation type other than the ones presented, it was also

RQ2

RQ1

RQ3

SHAP Text explanation Patch transformation

Demographics

Preferences

Characteristics

Gender Age Java experience ML experience

Easy to understand Interactive Descriptive Quantitative

Fig. 4: Conceptual model for the user survey

asked (Q13). Instead of showing only the explanation types
and asking about user preference, we showed three bugs and
their patches to give the user more context and, by doing so,
to simulate the real-world use of these explanations. Questions
Q12 and Q13 will provide insights for RQ1.

A user survey conducted to assess the user perception of
XAI in [18] reveals that the users expect the explanations to be
Easy to understand, Interactive, Descriptive, and Quantitative.
Hence, in our survey, then we asked the users (Q6, Q8, Q10)
if they agreed that each explanation type possessed these
characteristics. For these questions, 5-point Likert scales were
used having a scale from ”Strongly disagree” to ”Strongly
agree”. Also, the user was asked to provide if there are any
comments about each explanation type (Q7, Q9, Q11). The
question set Q6-Q11 will provide insights for RQ2.

Participants. The main target group of this survey was
developers experienced in Java programming. Using snowball
sampling [19] we collected 106 survey responses. Multiple
social media and email campaigns were initiated by the
authors to attract more participants. Initial sampling started
with contacts of the authors and using the snowball ef-
fect [19], the survey recorded answers from a diverse number
of participants. We grouped all participants into 3 classes:
a) software practitioners: those whose designation was related
to software engineering industry (Software Engineer, Tech
lead, Software Architect, QA Engineer/Lead, Project Manager
& CTO) b) Students: those whose designation specified a stu-
dent (Undergraduate, Masters, Graduate) c) Others: all other
designations that are not captured in previous classifications
(i.e. Researcher). Among the survey participants, 50% of
our participants are software practitioners, while 41.5% are
students and the rest of them, 8%, fall under others. The
majority of the participants (43.4%) had a minimum of 2 years
of experience, while 7.5% had no experience, and the rest of
them with 1-2 years of experience.

Analysis. We manually went through the open-ended ques-
tions and identified points users have expressed. The closed-
ended questions were quantitatively analyzed to obtain insights
about user preferences. We used the chi-square goodness of
fit test (α = 0.05) to check if our results were statistically
significant and not a random observation. The t-test for mean
differences was used for analyzing the differences between de-
mographic characteristics. For analyzing the ranking question
(Q12), we used the Friedman test (α = 0.05) to check if there
is a difference between the distribution of rankings of three
explanation types. The results are presented in the Section V.



V. SURVEY RESULTS

A. RQ1: Preferred Explanation

The average rankings of each explanation type are SHAP
(2.14), Text (1.99), and Transformation (1.87). Accordingly,
the most preferred explanation is patch transformation while
the least preferred is original SHAP explanation. Our proposed
extensions, text explanation and patch transformation, are
preferred to the original SHAP explanation. Friedman test (p-
value = 0.1366) for rankings suggests there is not enough
evidence to say that there is a significant difference between
the rankings for explanation types at α = 0.05. However, there
is statistical significance for the observation of ”original SHAP
explanation is least preferred by users” (P < 0.02). Figure 5
shows the rankings given to explanation types by all partic-
ipants. According to the average ranks, patch transformation
is ranked first, text explanation is ranked second, and original
SHAP explanation is the last.

0.0 0.2 0.4 0.6 0.8 1.0

Rank 3

Rank 2

Rank 1

Ra
nk

44.34%

25.47%

30.19%

28.3%

42.45%

29.25%

27.36%

32.08%

40.57%

All Participants

0.0 0.2 0.4 0.6 0.8 1.0

45.28%

24.53%

30.19%

32.08%

37.74%

30.19%

22.64%

37.74%

39.62%

Software Practitioners
SHAP Explanation Text Explanation Patch Transformation

Fig. 5: Ranking of explanation types by profession

For the open-ended question on the ideal explanation type
(Q13), a few comments mentioned they prefer a combination
of text explanation and patch transformation.

• ”It will be useful [sic] if the Explanation type 2 would be more descriptive since
it is easy to understand. Another suggestion is combining Explanation type 2 and
Explanation type 3.” - Software Engineer (ID83)

• ”. . . Certain type[sic] of explanations would make sense in certain scenarios. So,
beat[sic] would be to strike a balance. I’d like a combination of 2 and 3.” - Tech
Lead (ID128)

• ”I would like a hybrid of type 2 and type 3. A simpler explanation is[sic] natural
language with a step-by-step interactive explanation.. . . ” - Software Engineer
(ID305)

• ”A combination of interactive show case of where the bug accompanied with a
brief explanation.” - Software Engineer (ID306)

User Preference (RQ1): Original SHAP explanation is least
preferred by our participants (P < 0.02)

B. RQ2: Explanation Characteristics

Figure 6 captures how users have responded to questions
on characteristics of explanation types (Q6, Q8, Q10). These
questions can be divided into four areas: easy to understand,
interactive, descriptive, and quantitative.
Easy to Understand. The majority of the participants agrees
that text explanation (68.9%, P < .05) and patch transfor-
mation (64.2%, P < .05) are easy to understand while only
17.9% (P < .05) state SHAP explanation to be so. Further-
more, among the software practitioners, 64.2% (P < .05)
and 56.6% (P < .05) have, respectively, agreed that text
explanation and patch transformation are easy to understand
while only 20.8% (P < .05) agree for SHAP explanation.
Interactive. 80.2% of the participants (P < .05) agree patch
transformation is interactive. While 46.2% (P < .05) and

28.3% (P < .05) of the participants agree that SHAP expla-
nation and text explanation are interactive. Among software
practitioners, 75.5% (P < .05) agree that patch transforma-
tion is interactive while 41.5% and 30.2% agree for SHAP
explanation and text explanation.
Descriptive. Among all participants only 52.8% (P < .05)
agreed that both text explanation and patch transformation are
descriptive. 51.9% (P < .05) agree that the SHAP explanation
is descriptive. Among software practitioners, 50.9% (P < .05)
agree that the text explanation is descriptive while 43.4% (P <
.05) and 41.5% agree for the patch transformation and the
SHAP explanation.
Quantitative. For the quantitative characteristic, 58.5% (P <
.05) of the participants agree that the SHAP explanation is
quantitative while 41.5% and 29.2% agree for patch transfor-
mation and text explanation. This is obvious since there is
no quantitative element in the text explanation and the patch
transformation by design.

For the open-ended questions, we received several re-
sponses. The user comments on SHAP (Q7) highlighted the
difficulty in understanding the explanation given (user ID is
given in parentheses):

• ”it’s not very straightforward to understand. . . ” -
Tech Lead (ID128)

• ”Less readable and need experience to understand the suggestions” - Tech Lead
(ID248)

• ”. . . hard to understand because it has too much information and data representa-
tion is hard to comprehend.” - Software Engineer (ID312)

Users have highlighted that the text explanation is easier to
understand, but lacks descriptiveness (Q9):

• ”. . . definitely the easiest to understand.” - Tech Lead (ID128)
• ”. . . better than the Type 1, straightforward, understandable, but may not be

descriptive enough.” - Software Engineer (ID196)
• ”. . . Simple and easy to understand but might lack more information . . . ” -

Software Engineer (ID312)

For the patch transformation method (Q11), mixed com-
ments were received regarding interactivity and easy-to-
understand properties.

• ”it’s interactive. But doesn’t really make much sense to me. I don’t see the
usefulness[sic] of this replay of tokens.” - Tech Lead (ID128)

• ”Gives more interactive impact of patch implementation steps” - Tech Lead
(ID248)

• ”So far the most balanced one with more information and easy to understand.” -
Software Engineer (ID312)

Explanation Characteristics: majority of the participants
agrees that text explanation (68.9%, P < .05) and patch
transformation (64.2%, P < .05) are easy to understand
and 52.8% of the participants (P < .05) agreed that both
text explanation and patch transformation are descriptive.

C. RQ3: Impact of Demographics

We further analyze the preferences among different demo-
graphic groups to validate if our findings are consistent. A
t-test was used to check if there was a difference between the
average ranking between those groups. Table II summarizes
this analysis. We re-compute the average ranking for each
demographic group: gender, age, Java experience, and ML
experience. For the gender group, we only received binary
responses (despite providing non-binary options) hence we
divided among male and female. For the age group, we divided
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Fig. 6: Responses for questions on characteristics of explanation types

the participants as greater than or equal to 30 years and below.
For the Java experience group we divided the participants as
less than equal to 2 years and above. For ML experience group
we had three classes (N - Novice, B - Beginner, O - Others).

We computed the mean, standard deviation, and t-test values
to check for significant differences between subgroups. Over-
all, the results align with the ranking preferences, except in
two cases where the text-based explanation was preferred: (i)
participants aged 30 or older and (ii) those with beginner-level
ML experience. Furthermore, the average ranking of patch
transformation differs on ML experience (between Novice &
Beginner) at a confidence level of 95%.

Impact of Demographics: the lowest average ranking is
consistently observed where original SHAP explanation
being ranked lowest among different demographic groups.

VI. LIMITATIONS AND THREATS TO VALIDITY

Limitations: Our text-based explanation highlights the most
important section using constructs like if conditions but lacks
finer granularity and overlooks other impactful tokens. In our
patch transformation explanation, we focus on changes tied to
the most impactful tokens, but the resulting series of patches
may not provide sufficient clarity for developers to understand
why the model generated a specific patch.

Threats to Validity: Despite using a snowball sampling
method to collect diverse survey responses, we cannot guar-
antee that our findings apply to all software developers. To
address this, we’ve made our research artifacts, including sur-
vey results, publicly available for replication. Another potential
validity threat is the mix of software practitioners and students.
While students may not reflect the expertise of practitioners,
they are commonly used in developer studies [20]. To mitigate
this, we present findings for all participants and separately for
practitioners, noting no significant differences between the two
groups.

The survey may not fully reflect real-world scenarios, as it
only includes three bugs. To address this, we selected bugs
from well-known, real-world projects in the Defects4J bench-
mark. Additionally, participants might misinterpret the survey
questions. To minimize this risk, we conducted a pilot survey
with 5 experienced programmers to ensure clarity. We found
some users misunderstood the explanations as explanations of
the bug itself rather than why the APR model generated the
patch. In the final survey, we clarified that the explanations
were meant to explain the model’s patch generation.

VII. RELATED WORK

Learning-based Automated Program Repair aims to fix
software bugs automatically using Deep Learning techniques.
Examples of learning-based APR tools include CURE [21]
RewardRepair [3], DEAR [22] and SelfAPR [15]. These state-
of-the-art learning-based APR tools utilize the advancements
in Natural Language Processing. For example, CURE [17] is
based on the GPT model. The authors pre-trained a program-
ming language model on a large software code base to learn
developer-like source code. RewardRepair [3] based on the T5
model, was trained based on rewarding the network to produce
patches that compile and that do not over-fit. Finally, the
SelfAPR [15], which has employed a self-supervised training
approach, is based on T5.

Explainable Artificial Intelligence (XAI) methods for
explaining the rationale behind Deep Learning models can
be categorized along various dimensions. Post-hoc methods
explain the decisions of already trained models operating
external to the model [11], [12]. On the other hand, ante-
hoc explanations are built into the deep learning model, e.g.,
CCNN [23]. Local explanations explain individual predic-
tions [11], [24], whereas global explanations, such as feature
importance rankings, explain the overall model tendencies.
Moreover, XAI can be categorized into: 1) feature attribution
explanations, such as gradient-based methods (e.g., Integrated
gradients [12]), which pinpoint influential features towards the
model decision, and 2) concept-based explanations like lin-
guistic explanations [23], which provides explanations in terms
of higher-level concepts. This work proposes a framework that
extends feature-attribution-based explanation methods such as
SHAP to generate concept-based explanations.

XAI for APR: Explaining the rationale behind the generated
patch is crucial for APR to build trust and confidence in AI-
generated code, and it directly impacts how fast a generated
patch is merged into the codebase [25]. However, the incorpo-
ration of XAI for APR tools has been explored less. To the best
of our knowledge, the only work in this domain is utilizing
causal inference with sequence-to-sequence models by [26].
One key difference compared to our methods is the explanation
format. Our explanations are textual and in the form of patch
transformation, while this research generates a graph showing
the dependencies between input and output tokens. Further,
similar to other XAI techniques, such as SHAP, this work
does not consider syntactic structures of code.



TABLE II: Demographic effect on the average rank for each explanation type

Explanation type Gender Age Java Experience ML Experience
Male Female <30yrs >=30yrs <=2yrs >2yrs N B N O B O

SHAP
explanation

Mean 2.15 2.09 2.11 2.23 2.10 2.20 2.23 2.04 2.23 2.15 2.04 2.15
Std 0.86 0.87 0.87 0.82 0.86 0.86 0.84 0.85 0.84 0.87 0.85 0.87
p-value 0.757 0.490 0.571 0.350 0.683 0.611

Text
explanation

Mean 1.99 2.00 2.05 1.83 2.03 1.93 2.09 1.85 2.09 1.94 1.85 1.94
Std 0.74 0.87 0.75 0.79 0.76 0.77 0.78 0.77 0.78 0.75 0.77 0.75
p-value 0.948 0.183 0.512 0.210 0.389 0.658

Patch
transformation

Mean 1.86 1.91 1.84 1.93 1.87 1.87 1.67 2.11 1.67 1.91 2.11 1.91
Std 0.84 0.75 0.82 0.83 0.83 0.81 0.75 0.85 0.75 0.84 0.85 0.84
p-value 0.792 0.607 0.986 0.027 0.203 0.361

VIII. CONCLUSION

We proposed SCHOLIA framework that generates text and
patch-transformation explanations, for the patches generated
by the learning-based APR tools, utilizing an existing feature-
attribution-based method. In implementing the framework,
we have used SHAP as the feature attribution method and
SelfAPR as the APR model. We have conducted a user survey
with 106 participants to compare the effectiveness of our new
framework against the original SHAP explanations. The survey
results indicate that users find text explanation and patch
transformation easier to understand compared to the original
SHAP explanation. The most preferred explanation type is
patch transformation, while the least preferred is the SHAP
explanation.

Artifacts Link: DOIDOI 10.5281/zenodo.1112536710.5281/zenodo.11125367
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