
BugsInKube: A Collection of Reconciliation Bugs
Kabilan Mahathevan

Dept. of Comp. Science and Eng.
University of Moratuwa

Sri Lanka
kabilan.19@cse.mrt.ac.lk

Sivakajan Sivaparan
Dept. of Comp. Science and Eng.

University of Moratuwa
Sri Lanka

sivakajan.19@cse.mrt.ac.lk

Tharsha Sivapalarajah
Dept. of Comp. Science and Eng.

University of Moratuwa
Sri Lanka

tharsha.19@cse.mrt.ac.lk

Sunimal Rathnayake
Dept. of Comp. Science and Eng.

University of Moratuwa
Sri Lanka

sunimal@cse.mrt.ac.lk

Ridwan Shariffdeen
School of Computing

National University of Singapore
Singapore

ridwan@comp.nus.edu.sg

Abstract—In the contemporary technological landscape, the
widespread adoption of cloud systems and distributed resources
has highlighted the need to overcome inherent limitations in
achieving complete system dependability. This presents both
significant opportunities and challenges in automating bug de-
tection, bug fixing, and verification efforts in complex distributed
systems, such as cloud infrastructure management tools like
Kubernetes and Twine. Despite the importance of these efforts,
there is a notable lack of data that can be used to study
and analyze the types of challenges faced in developing and
supporting these systems, as well as in building test automation
and bug detection tools. To address this gap, we conducted an
in-depth investigation into one of the most popular ecosystems:
Kubernetes. We manually analyzed reported bugs and curated a
comprehensive dataset comprising 311 developer-confirmed bugs.
This dataset includes detailed information on bug categories,
severity, affected versions, and reproducible steps when available.
Through our analysis, we identified an emerging bug type
in these systems, referred to as reconciliation bugs. To assist
developers and researchers in creating new testing strategies
for these platforms, we developed a bug-reproducing script that
can reproduce 52 reconciliation bugs out of the 311 total bugs
in Kubernetes. This tool provides valuable insights into these
issues, facilitating the development of more robust testing and
maintenance strategies. The dataset is publicly available and can
be accessed at: https://github.com/EmInReLab/BugsInKube

Index Terms—Container Orchestration, Kubernetes, Bug, Data
Set

I. INTRODUCTION

In today’s digital landscape, cloud computing has signifi-
cantly transformed how companies manage and maintain their
applications and services [1]. There is a conspicuous trend
toward the adoption and migration of workloads to the cloud,
primarily driven by the pursuit of faster time-to-market, en-
hanced responsiveness, and substantial cost reductions. Cloud
cluster management is a critical factor for both major tech
companies and individuals in deploying and managing their
applications in the cloud. Gartner predicts that by 2026, 75%
of organizations will adopt a digital transformation model with
cloud as the fundamental underlying platform [2].

However, this increased demand also brings potential chal-
lenges, including security issues, elasticity issues, high avail-
ability concerns, and multi-tenancy complications [3]. Any
vulnerabilities or bugs in these platforms can have wide-
ranging and severe consequences for the services they support,
potentially impacting other applications using a multi-tenant
cloud infrastructure. Although empirical studies are essential
to understand the types of issues that emerge in cloud cluster
management systems, enabling the development of better
testing tools to detect these vulnerabilities before release, no
significant bug analysis or bug dataset currently exists for
cloud cluster management systems. Most empirical studies in
cloud systems focus on cloud computing and big-data ecosys-
tems [4]–[7], providing insights into general problems in the
cloud. However, separate analyses of systems that manage
the heterogeneous cloud hardware resources are required to
understand the specific issues within these platforms.

To address these concerns, we analyzed reported bugs in
one of the most prominent and widely used cloud cluster man-
agement systems, Kubernetes [8]. This container orchestration
tool is commonly employed in constructing cloud services
by efficiently managing hardware resources. We curated a
comprehensive dataset comprising 311 developer-verified bugs
sourced from the GitHub issue tracker. Through analyzing this
dataset, we gleaned valuable insights into the bug categories,
their severity, and the underlying problems within the system.

1GitHub issue link: https://github.com/kubernetes/kubernetes/issues/72593

Observe

Check Differences

Take Action

Desired State Actual State

Actor

State Modification
Request

Fig. 1: Control Loop Mechanism of State Reconciliation

https://github.com/EmInReLab/BugsInKube
https://github.com/kubernetes/kubernetes/issues/72593

Actor

API Server

Controller

N
od

e
K

ub
el

et

N
od

e
K

ub
el

et

N
od

e
K

ub
el

et

1.
C

ha
ng

e
D

es
ir

ed
St

at
e

2.Inform
respective

controller
to

take
action 3.1 Create Pods

3.2 Create Pods
3.3 Create Pods

Failure Info

4. Informs Pod Creation Failure

(a) Tight Loop Issue in the Control Loop Mechanism

Healthy Pod List

D
ep

lo
ym

en
t

Po
ds

Modify Kernel Parameters
Not Acceptable by Nodes

Pods crash because of
undesired state change

Create Pods in Tight
Loop with no Backoff

(b) Observation of the Bug

Fig. 2: A Reconciliation Safety Bug in Kubernetes 1

From the analysis of the manually curated dataset, we
identified a category of bug called reconciliation bug, which
constitutes the majority of the issues, with new bugs frequently
falling into this category. More details about this bug type are
explained in section II. We manually reproduced 52 reconcili-
ation bugs in Kubernetes and developed a bug-reproduction
tool, which requires the correct Kubernetes version to be
installed beforehand. We believe that this dataset will support
future work and studies related to building less vulnerable
cloud cluster management systems, developing automated
testing tools, and conducting software testing and maintenance
activities for cloud platforms.

II. BACKGROUND

The analysis of our dataset provided insights into an emerg-
ing category of bugs in cloud resource management systems,
known as reconciliation bugs [9]–[11]. Cloud cluster man-
agement systems are designed with self-healing as a primary
attribute, incorporating multiple components of the system that
collaborate to restore the application in case of crashes and
anomalies. Modern cloud cluster management systems [8],
[12], [13] are built using state-reconciliation design pattern,
in which the systems maintain a desired state to provide
application services to public users and the actual state of
the cloud cluster management systems is adjusted to reconcile
with the desired state through the self-configuration, self-
optimization, and self-healing properties of these systems [10]
as shown in the Figure 1. The disparity between these two
states can result in minor functional anomalies or failures that
propagate to larger system failures similar to the safety bug in
Kubernetes shown in Figure 2.

For every state property, there can be one or more controller
components that operate to reconcile that particular state,
but all follow the same control loop mechanism as depicted
in Figure 1. For example, in Kubernetes, the ReplicaSet
Controller is responsible for maintaining a specified number
of pod replicas running at any given time. If a pod fails,
the ReplicaSet Controller automatically creates a new pod to
replace it, ensuring continuous availability and adherence to

the desired state [14]. Additionally, other components within
the system collaborate with the controller to identify any
disparities in the state and complete the deployment of pods as
needed. Any defect in any of these components, including the
controller component itself, can disrupt the expected behavior
and result in failures within the control loop mechanism.
We categorize these defects in the cloud PaaS system as
reconciliation bugs.

III. MOTIVATIONAL EXAMPLE

Figure 2 depicts an example of a reconciliation bug. Con-
sider creating a deployment in Kubernetes using the deploy-
ment configuration file as in Listing 1, an actor requests
Kubernetes to modify the kernel parameter of the nodes run-
ning the deployment pods. Kernel parameters are settings that
configure the behavior of the Linux kernel, governing various
aspects of system operation such as memory allocation, pro-
cess scheduling, and network configuration. Listing 1 defines
the maximum number of connections that can be queued
for acceptance by the kernel. This is particularly relevant
for network-intensive applications like web servers. With this
configuration modification, such as adjusting the maximum
number of connections or open files [15], the desired state
is modified, therefore the control loop checks the difference
between the desired state and the actual state and takes the
necessary action.

Listing 1: Bug injecting Kubernetes configuration
...

spec:
securityContext:
sysctls:

- name: net.core.somaxcon
value: "10000"

...

In a cluster, each node can be either a physical or a virtual
machine, and typically, its kernel parameter configurations are

Bug Trackers
Bug Reports
Collection

Bug Reports
Database

Bug Reports
Filtering

Filtered Bug
Reports

Manual Bug
Filtering

Filtered Bug
Reports Bug Analysis

Bug Report
Manually Curated

Bug Dataset

Reproduction Script for
Reconciliation Bug

Fig. 3: High-level overview on the methodology

initially set to default values. For security reasons, modifi-
cations to kernel parameters of the nodes are restricted to
the root user, preventing changes from any other user [15].
Hence, when attempting to align with the desired state, the de-
ployed pod seeks to modify the kernel parameter of the node.
However, the node rejects this modification, resulting in the
failure of pod initialization. In such a scenario, if a node cannot
accommodate a pod for execution, it fails. Subsequently, the
ReplicaSet controller detects that the desired state is not met
and attempts to create another pod in the cluster. However,
this also fails, perpetuating a loop of unsuccessful attempts,
as illustrated by the sequence 2 → 3.3 → 4 → 2 in the Figure
2a. Over time, these repeated attempts can consume significant
CPU and memory, eventually leading to resource exhaustion
and crashing the entire cluster as illustrated in Figure 2b.

This issue arises due to a lack of awareness in the scheduler
component regarding the node’s capacity to accommodate the
pod during deployment. Alternatively, the controller may fail
to recognize the repetitive creation of the same pod, neglecting
to halt the creation process and provide pertinent information
to the user. This issue has been recurrently reported in Kuber-
netes GitHub issues 1, with developers currently offering only
a temporary solution. The frequent reporting of a bug by differ-
ent individuals and organizations highlights its impact on the
platform. Notably, 16% (52) of the 311 collected bugs in our
dataset are reconciliation bugs, underscoring the significance
of addressing these bugs in future development efforts. This
also emphasizes the need to create specialized bug detection
tools tailored to identifying and managing reconciliation bugs.

To facilitate further studies on reconciliation bugs [9] we
extracted 52 reconciliation bugs in Kubernetes, in a repro-
ducible data-set. We created the data-set to reproduce these
bugs in an installed Kubernetes system, along with step-by-
step instructions on what happens when each bug manifests.
This contribution aims to improve the understanding of rec-
onciliation bugs and motivate further research on program
analysis to detect such bugs.

IV. DATASET

The significant growth of the open-source movement has
led to a substantial increase in open-source cloud systems
with publicly accessible issue repositories. These repositories
contain valuable data, including bug reports, patches, and in-
depth discussions among developers. This readily available
information provides a valuable resource for understanding,

analyzing, and categorizing bugs more effectively [16]. How-
ever, there can also be numerous unimportant issues, feature
requests, incorrectly reported bugs, and issues created during
the development process because of the open-source nature
of these repositories. Therefore, the comprehensive analysis
of reported bugs on these platforms can be a time-intensive
process.

As indicated by Figure 3, we initially collected all is-
sues from the Kubernetes issue tracker on GitHub. We then
applied the following label filters: is:issue label:kind/bug
label:triage/accepted created:¿2014-10-15 -label:kind/failing-
test -label:area/test -label:kind/documentation. This filtering
process reduced the number of issues from 44,321 to 1,770.
Our filtering criteria focuses exclusively on issues designated
as bugs by developers and restricts its analysis to issues
submitted after the initial developer package release. This
enabled the exclusion of irrelevant issues generated during
software development. Additionally, we refined our analysis
by excluding documentation-related issues and test failures.
This reduced the total issues that needed manual inspection by
89%. Even among the filtered issues, not all proved to be valid
bugs; some were related to performance optimization, feature
requests, specific applications, or cloud provider support. To
address this, we conducted a manual review of 1000+ issues
and their corresponding developer conversations, ultimately
disregarding those that did not pertain to actual bugs.

We identified 311 authentic bugs in Kubernetes, catego-
rizing them according to the Special Interest Group (SIG)
responsible for the affected component and the severity of each
bug. For bugs with available information in the issue conver-
sations, we created reproducible steps. Figure 4 illustrates this
categorization, which facilitates the identification of bug-prone
areas within the system. This can aid in formulating more
effective testing strategies that prioritize these areas, leading to
efficient detection of existing bugs and preventative measures
against future occurrences.

While analyzing and categorizing these bugs, we noticed
that a significant portion—over 35%—of the dataset is related
to components responsible for scheduling, tagged with the
API Machinery and Scheduling SIGs. The API Machinery
SIG focuses on the development and improvement of the
Kubernetes cluster control plane, including the API server,
persistence layer (etcd), controller manager, cloud controller
manager, CustomResourceDefinition, and webhooks. The API
Machinery and Scheduling SIGs collaborate to manage con-

APIM
ac

hin
ery

Nod
e

Stor
ag

e

Netw
ork App CLI

Sch
ed

uli
ng

Sec
uri

ty
Auth

0

10

20

30
31.29

23.55

10.65 10.65
9.03

5.16
4.19

2.9 2.58

Special Interest Groups (SIGs)

%
re

po
rte

d
bu

gs

Bug categorization in Kubernetes

(a) Special Interest Group categorization of bugs in Kubernetes

Critical Major Minor
0

50

100

150

37

102

172

Type of Sevearity

#
re

po
rte

d
bu

gs

Severity of bugs in Kubernetes

(b) Bug Categorization based on Severity in Kubernetes

Fig. 4: Different Bug Categorization

trollers that maintain consistency between the desired and
current states of the Kubernetes cluster configuration [17]. This
prompted us to create reproducible scripts for the emerging
reconciliation bug category.

The bug-reproducing script is designed to first deploy the
correct Kubernetes configuration and verify that the control
loop mechanism functions as expected. After a short waiting
period, it introduces a deployment configuration that triggers
reconciliation issues. The tool also logs the entire process,
providing users with comprehensive insights into the tool’s
behaviour during execution.

V. RELATED WORK

Heterogeneous cloud container orchestration systems, such
as Kubernetes, are inherently complex due to their integration
of multiple individual programs. These systems enable cloud
and application providers to define the selection, deployment,
monitoring, and dynamic control of multi-container applica-
tions in the cloud. Unlike single-server systems, their complex-
ity arises from the need to manage diverse components and en-
sure seamless operation across distributed environments. Due
to the presence of numerous distributed components, hardware
failures, diverse user interactions, and deployment scenarios,
occasional downtimes are anticipated. There is much room
for improving cloud systems’ dependability [7], [18], [19].
There is no significant bug dataset specifically focusing on
reconciliation bugs, but there are a few bug analyses on general
cloud platforms.

The most extensive bug hunting in distributed systems has
been conducted in CbsDB [7] on six scale-out systems: Cas-
sandra, Flume, HBase, HDFS, MapReduce, and ZooKeeper.
They analyzed over 3000 issues in the issue tracking systems
of open-source cloud systems, originating from developers’
code reviews, in-house testing, and user reports between 2011
and 2014. This detailed analysis led to the categorization of
issues into reliability (45%), performance (22%), availability
(16%), data consistency (5%), scalability (1%), and QoS
(1%). These insights are invaluable for system developers and

operators, systems researchers, and tool builders aiming to
enhance the reliability of future scale-out systems [4], [20],
[21].

Haopeng Liu et al. systematically studied all high-severity
production-run incidents over six months in Microsoft Azure
services [22]. It identifies software bugs as the most common
cause of cloud incidents, accounting for nearly 40%. The study
provides insights into the types of software bugs that lead
to production incidents, their resolution methods, and differ-
ences from failures in single-machine systems. This research
enhances the understanding of cloud service reliability and
potential automation in incident resolution.

Recent research on building end-to-end testing for Kuber-
netes CustomResourceDefinition [9] signifies the importance
of test automation in identifying reconciliation bugs. However,
these end-to-end tests require extensive manual effort and are
limited by their inability to cover all possible system states and
transitions. This limitation makes comprehensive validation
prohibitively expensive and may result in missed bugs and
false alarms.

VI. LIMITATIONS AND FUTURE WORK

Our focus is on identifying reconciliation bugs across var-
ious cloud cluster management systems, not just Kubernetes.
Due to the active open-source community around Kubernetes,
we initially curated a dataset of reconciliation bugs specific
to this platform. However, we plan to expand our dataset
to include other cloud cluster management systems, such as
Twine [12] and Apache Mesos [23], to broaden our under-
standing and generalize the concept of reconciliation bugs
across different platforms.

The full dataset consists only of developer-confirmed re-
ported bugs in Kubernetes, including both open and closed
issues. Since the developer community is smaller compared
to the user community, many bug reports have not been
confirmed by developers. Therefore, those unconfirmed bug
reports, despite appearing legitimate, are not included in our
dataset. Additionally, many of these bugs are reported by
various cloud administrators and individuals across different

organizations, which often obscures the true impact of these
bugs in production environments due to the anonymity main-
tained in the reporting process.

Bug reports involve extensive discussions between the
reporter and developers, making them quite lengthy. After
reading through these conversations, we extracted and included
reproducible steps from the discussions, wherever possible,
into the full dataset. However, we did not manually reproduce
all the bugs in the full dataset. In future work, manually
reproducing all the bugs from the full dataset and providing
reproducible steps for each bug would be beneficial for under-
standing the bugs and building better testing tools.

To reduce the manual effort in testing these platforms
while ensuring the non-existence of reconciliation bugs, it is
essential to develop a testing framework specifically catered
to this need. Techniques like chaos testing [24]–[26], while
effective for identifying reconciliation bugs, often lack deter-
minism. However, integrating deterministic approaches similar
to Mallory [27] for distributed systems into chaos testing
could help bring more predictability to the process. This
integration could pave the way for creating a fuzz testing tool
specifically designed to identify reconciliation bugs in cloud
cluster management tools.

VII. CONCLUSION

This paper presents a collection of developer-confirmed
bugs in Kubernetes, a container orchestration tool. Addition-
ally, it includes reproduction scripts for an emerging cate-
gory of bugs known as reconciliation bugs. We believe that
this dataset will support open, reproducible future research
in automated bug report management, software testing, and
software maintenance more broadly. A demonstration video
showcasing the tool in action can be accessed here: https:
//www.youtube.com/watch?v=q0cPP-GHJUc

Bug Data Set: Our dataset can be accessed via the following
link: https://github.com/EmInReLab/BugsInKube

REFERENCES

[1] “Why developers like Kubernetes,” Oct. 2023, [Online; accessed 2.
Oct. 2023]. [Online]. Available: https://stackshare.io/kubernetes

[2] “Gartner Forecasts Worldwide Public Cloud End-User Spending to
Reach Nearly $600 Billion in 2023,” Oct. 2023, [Online; accessed 18.
Oct. 2023]. [Online]. Available: https://shorturl.at/jhR5o

[3] G. N. Iyer, J. Pasimuthu, and R. Loganathan, “PCTF: An integrated,
extensible cloud test framework for testing cloud platforms and
applications,” in 2013 13th International Conference on Quality
Software. IEEE, Jul. 2013. [Online]. Available: https://doi.org/10.
1109/qsic.2013.65

[4] H. Liu, G. Li, J. F. Lukman, J. Li, S. Lu, H. S. Gunawi, and C. Tian,
“Dcatch: Automatically detecting distributed concurrency bugs in cloud
systems,” ACM SIGARCH Computer Architecture News, vol. 45, no. 1,
pp. 677–691, 2017.

[5] H. Chen, W. Dou, Y. Jiang, and F. Qin, “Understanding exception-
related bugs in large-scale cloud systems,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 339–351.

[6] D. J. Dean, H. Nguyen, X. Gu, H. Zhang, J. Rhee, N. Arora, and
G. Jiang, “Perfscope: Practical online server performance bug inference
in production cloud computing infrastructures,” in Proceedings of the
ACM Symposium on Cloud Computing, 2014, pp. 1–13.

[7] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake,
T. Do, J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman,
V. Martin, and A. D. Satria, “What bugs live in the cloud? a study
of 3000+ issues in cloud systems,” ser. SOCC ’14. New York, NY,
USA: Association for Computing Machinery, 2014, p. 1–14. [Online].
Available: https://doi.org/10.1145/2670979.2670986

[8] “Production-Grade Container Orchestration,” Mar. 2024, [Online;
accessed 21. Mar. 2024]. [Online]. Available: https://kubernetes.io

[9] J. T. Gu, X. Sun, W. Zhang, Y. Jiang, C. Wang, M. Vaziri, O. Legunsen,
and T. Xu, “Acto: Automatic end-to-end testing for operation correctness
of cloud system management,” in Proceedings of the 29th Symposium
on Operating Systems Principles, 2023, pp. 96–112.

[10] “Cloud native computing foundation operator white paper,” https://www.
cncf.io/wp-content/uploads/2021/07/CNCF Operator WhitePaper.pdf.

[11] J. Bowes, “Level Triggering and Reconciliation
in Kubernetes,” Jan. 2018, [Online; accessed 26.
Mar. 2024]. [Online]. Available: https://hackernoon.com/
level-triggering-and-reconciliation-in-kubernetes-1f17fe30333d

[12] C. Tang, K. Yu, K. Veeraraghavan, J. Kaldor, S. Michelson, T. Kooburat,
A. Anbudurai, M. Clark, K. Gogia, L. Cheng et al., “Twine: A unified
cluster management system for shared infrastructure,” in 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), 2020, pp. 787–803.

[13] T. Melissaris, K. Nabar, R. Radut, S. Rehmtulla, A. Shi, S. Chan-
drashekar, and I. Papapanagiotou, “Elastic cloud services: scaling
snowflake’s control plane,” in Proceedings of the 13th Symposium on
Cloud Computing, 2022, pp. 142–157.

[14] “Controllers,” Nov. 2023, [Online; accessed 3. Jun. 2024]. [Online].
Available: https://kubernetes.io/docs/concepts/architecture/controller

[15] “Chapter 5. Configuring kernel parameters at runtime Red Hat Enterprise
Linux 8 | Red Hat Customer Portal,” Jun. 2024, [Online; accessed 4. Jun.
2024]. [Online]. Available: https://access.redhat.com/documentation/
en-us/red hat enterprise linux/8/html/managing monitoring and
updating the kernel/configuring-kernel-parameters-at-runtime
managing-monitoring-and-updating-the-kernel

[16] T. Diamantopoulos, D.-N. Nastos, and A. Symeonidis, “Semantically-
enriched jira issue tracking data,” in 2023 IEEE/ACM 20th International
Conference on Mining Software Repositories (MSR). IEEE, 2023, pp.
218–222.

[17] “Kubernetes github issues.” [Online]. Available: https://github.com/
kubernetes/kubernetes

[18] A. Velimirovic, “Cloud Outage: Why and How Does It Happen?”
phoenixNAP Blog, Sep. 2023. [Online]. Available: https://phoenixnap.
com/blog/cloud-outage

[19] E. Casalicchio, Container Orchestration: A Survey. Cham: Springer
International Publishing, 2019, pp. 221–235. [Online]. Available:
https://doi.org/10.1007/978-3-319-92378-9 14

[20] T. Leesatapornwongsa, M. Hao, P. Joshi, J. F. Lukman, and H. S.
Gunawi, “{SAMC}:{Semantic-Aware} model checking for fast discov-
ery of deep bugs in cloud systems,” in 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14), 2014, pp.
399–414.

[21] C. Zhang, J. Li, D. Li, and X. Lu, “Understanding and statically detecting
synchronization performance bugs in distributed cloud systems,” IEEE
Access, vol. 7, pp. 99 123–99 135, 2019.

[22] H. Liu, S. Lu, M. Musuvathi, and S. Nath, “What bugs cause production
cloud incidents?” in Proceedings of the Workshop on Hot Topics in
Operating Systems, 2019, pp. 155–162.

[23] “Apache Mesos,” Dec. 2022, [Online; accessed 21. Mar. 2024].
[Online]. Available: https://mesos.apache.org

[24] “ChaosBlade · Help companies solve the high availability problems
in the process of migrating to cloud-native systems through chaos
engineering | ChaosBlade,” Jul. 2024, [Online; accessed 13. Aug.
2024]. [Online]. Available: https://chaosblade.io/en

[25] “chaosmonkey,” Mar. 2024, [Online; accessed 24. Mar. 2024]. [Online].
Available: https://github.com/Netflix/chaosmonkey

[26] “Chaos Mesh Overview | Chaos Mesh,” Mar. 2024, [Online; accessed
24. Mar. 2024]. [Online]. Available: https://chaos-mesh.org/docs

[27] R. Meng, G. Pı̂rlea, A. Roychoudhury, and I. Sergey, “Distributed system
fuzzing,” arXiv preprint arXiv:2305.02601, 2023.

https://www.youtube.com/watch?v=q0cPP-GHJUc
https://www.youtube.com/watch?v=q0cPP-GHJUc
https://github.com/EmInReLab/BugsInKube
https://stackshare.io/kubernetes
https://shorturl.at/jhR5o
https://doi.org/10.1109/qsic.2013.65
https://doi.org/10.1109/qsic.2013.65
https://doi.org/10.1145/2670979.2670986
https://kubernetes.io
https://www.cncf.io/wp-content/uploads/2021/07/CNCF_Operator_WhitePaper.pdf
https://www.cncf.io/wp-content/uploads/2021/07/CNCF_Operator_WhitePaper.pdf
https://hackernoon.com/level-triggering-and-reconciliation-in-kubernetes-1f17fe30333d
https://hackernoon.com/level-triggering-and-reconciliation-in-kubernetes-1f17fe30333d
https://kubernetes.io/docs/concepts/architecture/controller
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/configuring-kernel-parameters-at-runtime_managing-monitoring-and-updating-the-kernel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/configuring-kernel-parameters-at-runtime_managing-monitoring-and-updating-the-kernel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/configuring-kernel-parameters-at-runtime_managing-monitoring-and-updating-the-kernel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/configuring-kernel-parameters-at-runtime_managing-monitoring-and-updating-the-kernel
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://phoenixnap.com/blog/cloud-outage
https://phoenixnap.com/blog/cloud-outage
https://doi.org/10.1007/978-3-319-92378-9_14
https://mesos.apache.org
https://chaosblade.io/en
https://github.com/Netflix/chaosmonkey
https://chaos-mesh.org/docs

	Introduction
	Background
	Motivational Example
	Dataset
	Related Work
	Limitations and Future Work
	Conclusion
	References

