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Abstract—Elasticity is a key feature in Cloud Computing
where virtualized resources are provisioned and de-provisioned
via auto-scaling. However, auto-scaling in most Platform-as-a-
Service (PaaS) systems is based on reactive, threshold-driven ap-
proaches. Such systems are incapable of catering to rapidly vary-
ing workloads, unless the associated thresholds are sufficiently
low. Alternatively, maintaining low thresholds leads to resource
over-provisioning under relatively stable workloads. Moreover,
thresholds are not a good indication of QoS compliance, which is
a key performance indicator of a cloud application. Hence, it is
nontrivial to determine an optimum threshold while minimizing
costs and meeting QoS demands. We propose inteliScaler, a
proactive and cost-aware auto-scaling solution to address these
issues by combining a predictive model, cost model, and a smart
killing feature. An ensemble workload prediction mechanism is
introduced based on time series and machine learning techniques
for making accurate predictions on drastically different workload
patterns. Utility of the solution is demonstrated using both
simulations and empirical evaluations using Apache Stratos PaaS
(deployed on the AWS EC2), as well as RUBiS and real-world
workload traces. Results show significant QoS improvements and
cost reductions by inteliScaler compared to a typical reactive and
threshold-based PaaS auto-scaling solution.

Keywords: Auto-scaling; Cloud computing; PaaS; Prediction

I. INTRODUCTION

Auto-scaling is the process of dynamically allocating and
deallocating resources for a particular application deployed in
the cloud. This is of vital importance for clients to optimize
their resource utilization. The goal of a cloud auto-scaling
mechanism (i.e., auto-scaler) is to achieve higher Quality of
Service (QoS) levels while minimizing the associated cost.

Cloud auto-scaling systems have to address two major
challenges. First, an auto-scaler needs to be aware of the
workload that the system has to deal with. Second, auto-scaler
should allocate the right amount of resources to the system
in a cost-effective manner while maintaining its QoS. Auto-
scalers use two main approaches to address the first challenge.
Depending on the selected approach, the auto-scaler would
gain workload awareness in a proactive or reactive manner.
In the reactive approach, the auto-scaling decision would be
triggered by a predefined set of events. In contrast, proactive
auto-scaling mechanisms forecast the workload ahead such that
the auto-scaler can make decisions based on the anticipated
workload instead of waiting for a trigger. A major challenge
in cloud workload prediction is to come up with a solution
that would perform well against drastically different workload

patterns. For example, a model that typically performs well
on workloads with seasonal trends does not perform well
with frequently fluctuating loads [1]. The reactive approach
is commonly used in PaaS auto-scalers [2], [3]. It is relatively
simple to implement, but greatly reduces the solution space
available when it comes to addressing the second problem,
i.e., resource allocation. Whereas an accurate understanding
about the future workload enables better resource management
such as proactive spawning of new a Virtual Machine (VM)
and not killing a VM until end of the billing cycle. Hence,
we have opted for proactive auto-scaling over reactive auto-
scaling in our solution, as proactive mechanisms supported
by accurate prediction mechanism enable auto-scalers to make
more detailed decisions.

Much research work has been conducted (as discussed in
Section II) in relation to resource allocation problem as well
[4], [5]. However, almost all the available PaaS solutions are
built on rule-based scaling. In the rule-based approach, for
example, spin up decisions will be taken when the average
memory consumption of the cluster of VMs is over 75%. Such
mechanisms mostly rely on user defined threshold parameters
for configuring policies or rules to govern the scaling decisions
[6]. One of the major drawbacks with this type of rule
based, threshold-driven auto-scaling is that the user is expected
to be a domain expert, capable of setting up appropriate
threshold values for memory usage and CPU utilization for
a given application. Also, mapping application metrics such
as response time and throughput to system-level metrics such
as CPU utilization and I/O Operation per Second (IOPS) is
nontrivial.

In this paper, we propose a proactive and cost-aware auto-
scaling solution to address these issues by combining a predic-
tive model, cost model, and a smart killing feature. We utilize
a workload prediction mechanism based on time-series fore-
casting and machine-learning techniques. Experimental results
show that the proposed ensemble method outperforms individ-
ual techniques, as well as some of the popularly used ensemble
models, when it comes to accuracy. Moreover, we propose
a greedy heuristic-scaling algorithm to address the resource
allocation problem considering both the QoS and cost factors.
In the algorithm, we introduce the idea of penalty factors
for quantifying and incorporating performance degradations to
the scaling model, an idea inspired by penalties introduced in
Service Level Agreements (SLAs) of popular PaaS platforms
such as Google App Engine. The scaling algorithm evaluates
all possibilities and selects the optimum resource configuration



considering the lease cost and penalty due to performance
degradation. This scaling mechanism mitigates the problem of
having to incorporate threshold values as in rule-based scaling.

In addition to introducing a scaling algorithm to calculate
the required resources, we take a novel perspective in ad-
dressing the auto-scaling problem by injecting pricing model
awareness to our solution. In our opinion, ignorance of the
pricing model in the scaling decision is a major drawback
in current PaaS auto-scalers. For example, consider a typical
application deployed on Amazon Web Services (AWS). On
a sudden fluctuation in the workload, a typical auto-scaler
would scale-out by spawning a new VM instance, and when
the workload is back to normal, the auto-scaler would scale-in
by killing one of the VM instances which has already been
paid for an hour. Thus, the customer has effectively lost 50
minutes of utilization of the instance, though it has been paid.
The smart killing feature, which we adapted to our solution
from [7] would apprehend the utilization of each VM instance,
and scale-in instances only when their lease periods are about
to expire. It could result in extra saving by mitigating the
requirement to spin up another instance on a sudden fluctuation
of the workload within the paid hour.

In an attempt to implement our solution and demonstrate
the utility of the proposed PaaS auto-scaler, we target Apache
Stratos PaaS (however, the techniques detailed here are exten-
sible to other PaaS systems as well). Apache Stratos [8] is
an open source PaaS framework that encapsulates IaaS-level
details to the level of reduced granularity and complexity of a
PaaS, while offering multi-tenancy and multi-cloud deploy-
ment capabilities. Stratos supports multiple IaaS providers,
including AWS, OpenStack, GCE (Google Compute Engine),
and Microsoft Azure [8]. Stratos auto-scaler is based on policy-
driven decisions, which performs workload prediction for a
small time window (usually a few minutes) but does not utilize
resource optimization approaches explicitly, thereby incurring
unnecessary costs to the customer, such as over provisioning
of resources and naive scale-down decisions. Apart from the
typical characteristics of a PaaS auto-scaler, Stratos offers other
features such as a modular architecture allowing easy modifi-
cations, and the availability of a mock IaaS as a component for
testing and evaluation, which would greatly assist any research
in terms of monetary and implementation cost.

We evaluated the proposed solution, namely inteliScaler,
by deploying Apache Stratos on AWS Elastic Compute Cloud
(EC2). We deployed the three-tier bidding benchmark RUBiS
as the user application and experimented with several workload
traces. Our results demonstrate that inteliScaler successfully
scales the application in response to fluctuating workloads,
without user intervention and without off-line profiling. More
importantly, we compare our solution with existing rule-
based triggers and show that inteliScaler is superior to such
approaches.

Rest of the paper is organized as follows. Section II
presents the related work. High-level architecture of inteliS-
caler is presented in Section III. Prediction model is presented
in Section IV while cost-aware resource allocation is presented
in Section V. Section VI and VII present simulation and exper-
imental results, respectively. Concluding remarks are presented
in Section VIII.

II. RELATED WORK

Significant research has been conducted in the domain of
cloud auto-scaling, particularly at IaaS level. However, we
limit our focus to PaaS level and IaaS solutions that can be
adopted to PaaS.

A pluggable auto-scaling system that adds hardware and
QoS awareness while capturing the cost of a scaling decision
to complement AppScale PaaS is presented in [7]. Authors
seek to provide an auto-scaling solution, which learns the
behavior of a web application and provides optimal scaling
decisions on AWS using hot spares and spot instances. While
the paper emphasizes the importance of QoS factors as well as
cost model awareness, it lacks a reliable workload prediction
mechanism that resource allocation mechanism can rely on.
Dependable Compute Cloud (DC2) is an application agnostic,
model driven, adaptive auto-scaling system proposed in [6].
DC2 employs a Kalman Filtering technique in combination
with a queueing theoretic model to proactively scale resources
according to the varying workload. DC2 addresses the im-
portant segment of auto-scaling, namely the removal of user
input to specify scaling decisions. However, it does not capture
the cost incurred by the scaling process and therefore is not a
complete auto-scaling solution that is cost effective. SLA is an
important factor when providing cloud resources as services.
A SLA defines the contract between a service provider and a
service consumer on an agreed QoS level. SLA-driven Cloud
Auto-scaling (SCAling) an advanced implementation of cloud
elasticity based on SLA [9]. It successfully handles the trade-
off between profit and customer satisfaction level without
requiring manual intervention. The main idea is to exploit the
SLA requirements to propose dynamic resource provisioning.

Yang et al. [10] have used use a sliding window based
Linear Regression Model (LRM) for workload prediction and
showed a low prediction deviation. They have also proposed
an auto-scaling mechanism to scale virtual resources at dif-
ferent resource levels in service clouds which combines real-
time scaling and pre-scaling under three scaling techniques,
namely self-healing scaling, resource-level scaling and VM-
level scaling. Simultaneous optimization of resource cost, QoS
and availability is a major challenge in the context of cloud
auto-scaling. Roy et al. [11] have addressed this challenge
with a resource allocation algorithm based on model predictive
techniques, which allocates or deallocates machines to appli-
cations with the goal of optimizing their utility over a limited
prediction horizon. As part of their research, they have used
a second order ARMA filter for workload prediction on the
World Cup 98 traces [12] and showed accurate results.

Even though extensive research has been conducted on
various aspects of cloud auto-scaling [13], [14], [15], [16],
we have recognized that available PaaS cloud solutions stick
to threshold driven, rule-based reactive auto-scaling. This is
mainly due to the lack of a solution that addresses both future
workload prediction and resource allocation.

III. OVERALL SOLUTION - INTELISCALER

We propose an automated scaling service for the PaaS
systems that would take scaling decisions based on the char-
acteristics of the application while considering the operational
cost including the penalty cost. As seen in Fig. 1 there are



two main components in our solution, each being individually
responsible for one aspect of the scaling decision. Workload
Predictor predicts the future workload by processing statistic
from the Real Time Event Processor. Prediction results are then
sent to the Resource Monitor. Resource Monitor is responsible
for resource allocation and deallocation. Resouce Monitor
consists of two subcomponents, namely Resource Quantifier
and Cost Optimizer. Resource Quantifier decides the number
of instances required to handle predicted or anticipated work-
load. Cost Optimizer handles qualitative aspect by deciding
which instances to spin-down or which type of instance to
spin-up while taking the pricing models of the underlying
IaaS into consideration. Next, the prediction model and cost-
aware resource allocation applicable for these components are
discussed.

Figure 1. inteliScaler System Architecture.

IV. PREDICTION MODEL

A. Limitations of Existing Approaches

The time-variant metrics employed in measuring cloud
workloads such as CPU utilization, memory consumption, and
in-flight request count can effectively be treated as a set of
time series, transforming the prediction problem to the more
generalized notion of time series analysis. Time-series analysis
of workload data is a popular research domain. Techniques like
single order auto-regression, quadratic exponential smoothing
and ARMA filters have been shown to produce accurate results
in this regard [11], [17], [18]. In addition, machine learning
techniques including sliding window based linear regression,
Artificial Neural Networks (ANNs), and Hidden Markov Mod-
els (HMM) have been applied by other researchers [10], [19].

These researches often focus on specific datasets, so that
the resulting models are not sufficiently capable of adapting to
different workload characteristics present in multi-application
environments. In addition, most models are derived using
offline training, and hence do not dynamically adapt to latest
workload variations. Given that specific time series prediction
techniques like ARIMA and exponential moving average re-
quire certain conditions to be satisfied by the input datasets
and require parameter adjustments to fit to specific datasets,
an online training process is essential for obtaining an accurate
fit.

While proactive auto-scaling can be beneficial for a PaaS
cloud with diverse applications and drastically differing re-
source demands, such auto-scalers should be capable of ac-
curately predicting future workloads over a reasonable time

horizon in order for their proactive decisions to be effective.
Making early scaling decisions, such that the required re-
sources would be allocated in advance to cater for future work-
loads, is highly dependent on the availability of such accurate
predictions. Following can be identified as key characteristics
of a good cloud workload prediction model:

• Ability to predict accurately over a sufficiently large
time horizon, considering factors like VM start-up and
shutdown delays.

• Online training capability, as evolution and continuous
learning of new workload characteristics are essential
as the workload dataset grows with time.

• Bounded processing time per auto-scaling request.

• Immunity to overfitting to specific patterns, as it
should be able to deal with different applications and
hence a wide variety of dynamic workload patterns.

B. Proposed Approach

For adaptive workload prediction, we propose an error-
based ensemble technique that tries to address situations where
historical data is initially unavailable, making offline training
impossible. Ensemble technique uses a mixture of prediction
algorithms from time-serial analysis and machine leaning. As
the dataset accumulates over time, the prediction algorithm
will adapt its newer forecasts to latest characteristics of the
accumulated workload data.

In existing error-based combining techniques, mean values
of error metrics (e.g., absolute error, absolute percentage error,
squared error, etc.) are taken into account while calculating
the contributing factors for individual methods. Treating the
currently available dataset as a time series X = [x1, x2, .., xt]
we want to calculate predictions for xt+h. If the final predicted
value is x̂t+h and the predicted value from the i-th model of

the ensemble set-up for xt+h is x̂
(i)
t+h, the ensemble value x̂t+h

can be defined as a weighted sum of predictions from each
model:

x̂t+h =

k
∑

i=1

wix̂
(i)
t+h ∀k ∈ {1, 2, 3, ..., n} (1)

where the i-th forecasting method is assigned a weight wi.
Considering that the weights should add up to unity for the
sake of unbiasedness [20], we define the contribution from the
i-th model to the final result as ci, so that the above equation
becomes:

x̂t+h =

∑k

i=1 cix̂
(i)
t+h

∑k

i=1 ci
(2)

where wi = ci∑
k
j=1 cj

. To determine the contribution coeffi-

cients ci for our technique, we use past forecast errors of each
model. Due to the need for the accurate predictions for the next
time horizon, the contributions are calculated using inverses of
the past forecasting errors.

Among the popular error quantification techniques, models
whose errors are based on the last observation overlook overall
accuracy and highlight the error of the last prediction, whereas
average errors assign equal significance to all the last predic-
tion errors. However, our situation requires assigning a larger



significance to errors in more recent predictions and smaller
significance to earlier predictions. We address this requirement
by using exponential smoothing to fit the past forecast errors,
and the contribution coefficients ci,t are calculated using the
inverses of the the fitted values (et). If bi,t is the fitted value
of the past forecasting error from the i-th model at t-th time
interval, ci,t =

1
bi,t

. Where et can be the absolute error, squared

error, or absolute relative error at t-th prediction. bi,t can be
defined as:

bi,t = αe(i,t) + (1− α)b(i,t−1) (3)

where 0 ≤ α ≤ 1

bi,t = αe(i,t) + α(1− α)e(i,t−1) + α(1− α)2e(i,t−2) + ...

ci,t =
1

bi,t
(4)

For the proper use of the error-based weighting mechanism
described above, it is necessary that the models being en-
sembled should capture different characteristics of workloads,
and hence be collectively capable of covering a wide range
of workload characteristics. After careful consideration, we
have included an Autoregressive Integrated Moving Average
(ARIMA) model which assumes a linear correlation structure
among the time series values, a neural network model that
can capture complex nonlinear relationships via a data-driven
approach, an exponential model for preserving generality and
capturing exponential patterns, and a naive forecast model
which forecasts the last known data point for the next interval
as a sentinel for mitigating situations where insufficiently
trained models (especially the early-stage neural network) pro-
duce out-of-range forecasts. A detailed discussion on selection
of these four models is presented in [21].

C. Proposed Prediction Algorithm

The proposed workload prediction algorithm can be defined
as follows:

1) Consider the time series history window at time t,
X = [x1, x2, ..., xt].

2) Calculate forecast value from the i-th time series

forecasting method over the time horizon h, x̂
(i)
t+h∀i ∈

{1, 2, 3, ..., k}, where k is the number of forecasting
methods used.

3) Fit a history window for the last t actual data points
using the i-th method.

4) Use an exponential smoothing model to fit the errors
resulting from Step 3, and use them to calculate the
contribution factor for the i-th model at t, c(i,t).

5) Calculate the point forecast for time (t + h) using

x̂t+h =
∑k

i=1 c(i,t)x̂
(i)
t+h∑

k
i=1 c(i,t)

.

6) At time (t + 1), actual value for time (t + 1) will
be available. Add this value to the history window
X = X ∪ {xt+1} and repeat from Step 2.

While this algorithm does not specify a particular PaaS work-
load or performance metric, it can be used with any time-
variant metrics such as CPU utilization, memory consumption,
and request in flight.

Table I. COMPARISON OF WORKLOAD PREDICTION ACCURACY ON

CLOUD DATASETS.

Model
Google Cluster Memory CPU

RMSE MAPE RMSE MAPE RMSE MAPE

ARIMA 12.963 0.051 7.238 0.136 2.976 0.036

Exponential 12.886 0.041 7.005 0.160 3.150 0.048

Neural net. 12.530 0.036 8.169 0.135 2.792 0.031

Stratos 19.757 0.116 9.928 0.172 5.692 0.024

ARMA-based model 12.549 0.069 7.185 0.180 3.477 0.023

Mean Ensemble 12.099 0.051 7.036 0.130 2.900 0.029

Median Ensemble 12.059 0.055 7.010 0.141 2.944 0.028

Proposed Ensemble 11.934 0.027 6.972 0.129 2.873 0.027

D. Evaluation

We implemented the proposed prediction algorithm in R
and tested it against a several publicly available datasets,
as well as several real-world cloud workloads [22] collected
from server applications. Our solution was compared with
each of the constituent models in the ensemble solution,
two other popular ensemble techniques (mean and median
ensemble), the existing prediction technique in Apache Stratos,
and the prediction model described in [11]. Table I shows
the comparison of prediction approaches against CPU and
memory usage traces obtained from a dedicated standalone
server from a private cloud, as well as and a summarized
portion of the Google cluster dataset [23], which includes a
series of task execution details against their starting and ending
times. Boldfaced and underlined values in the table denote
instances of the best and worst performances observed for
each dataset across all methods, respectively. For the evaluation
we used T = 15 minutes, based on the fact that AWS offers
hourly billing, adding a 5-minute lookahead time (for deciding
whether the VM would be useful during the first few minutes
of its next billing cycle as well, as the initialization of a
new VM to a working state took about 5 minutes in our
Stratos set-up) to the existing 10-minute grace period that we
were using for smart killing operations. From the results it is
clear that our proposed technique provides the best prediction
results for several datasets while never performing worse than
the individual prediction methods. See [21] for a detailed
discussion on results.

V. COST-AWARE RESOURCE ALLOCATION

Most of the public PaaS solutions like Google App Engine
provide SLAs based on the QoS provided. According to these
SLAs, a penalty will be charged from the provider to the PaaS
user in cases where the provider was unable to provide the
agreed level of service. In most cases this penalty is defined
as a percentage of the monthly cost of users. We propose a
greedy heuristic scaling algorithm inspired by already existing
PaaS SLAs. However, unlike most PaaS providers, we do
not consider service uptime as the measure of QoS, instead
we consider any performance degradation with respect to the
metric considered (e.g., memory consumption, CPU utilization,
and requests in flight) as a violation.

A. Scaling Algorithm

Considering both the resource cost and the penalty for
performance degradation, we define the total cost in the next
T minutes as follows:

Ct(n) = Cins.n+ Cins.n.f(
vi

T
.100) (5)



nopt = argminn∈N ∧ n∈[min,max]Ct(n) (6)

Here f is a predefined function which calculates penalizing
factor based on the percentage of performance degradation. T
is the total time for prediction, Ct(n) is the total cost for time
T, and Cins is the cost for an VM instance, n is the number
of instances, and vi is the violation time.

Hypothetical example in Fig. 2 demonstrate how the
proposed algorithm works. Using the above definition, we
calculate the total cost for different numbers of instances n
iterating through minimum to maximum VM count. Increasing
the number of instances increases resource cost, but decreases
penalty factor (and therefore the violation cost). Considering
values from the minimum number of VMs (shown by the
bottommost line in Fig. 2) to the maximum number of VMs
allowed (shown by the topmost line), we decide on an optimum
number that minimizes the total cost. Such an exhaustive
search is made possible by the bounded and relatively small
range of VM count in most set-ups.

Figure 2. Calculating optimum number of VM instances nopt.

B. Pricing Model Awareness

Our proposed solution also considers the pricing model of
the underlying IaaS layer while taking auto-scaling decisions.
We adapted the smart killing feature proposed in [7] after eval-
uating the concept. Cloud providers like AWS bill customers
on a per-hour basis, which means a user will be charged for one
hour, even if an instance is used only for a few minutes. Smart
killing suggests that an instance should not be spin downed, if
it has not completed a full billing cycle. Considering practical
issues such as the time required to gracefully shut down an
instance, we spin down an instance only if it used for 50 to
57 minutes in its billing hour. However, smart killing is only
useful for IaaS models with relatively long billing cycles.

C. Evaluation of Resource Allocation

1) Behaviour of Different Auto-scaling Approaches: We
evaluated proposed approach using different workloads. Fig.
3, 4, and 5 show resource allocation of proposed algorithm
based on Load Average Statistics from RUBIS workload on
AWS deployment.

Two graphs in Fig. 3 shows the variation of VM instance
count with and without smart killing when the prediction
mechanism of (original) Stratos is used, along with an 80%
threshold value to calculate the required number of instances.
Graphs in Fig. 4 and 5 show possible combinations of reactive

Figure 3. Simulation results using existing Apache Stratos prediction
mechanism and threshold base scaling.

Figure 4. Simulation results using reactive auto-scaling with threshold base
scaling.

Figure 5. Simulation results using proactive auto-scaling with proposed
scaling algorithm.

and proactive auto-scaling approaches with and without smart
killing. An 80% threshold level is used in reactive solutions as
well. In the proactive approach, the proposed heuristic is used
with the following penalty function:

f(x) =















0 if 0 < x ≤ 0.05;

0.1 if 0.05 < x ≤ 1;

0.2 if 1 < x ≤ 5;

2
x
20 if 5 < x ≤ 100; .

Fig. 6 shows the variation of cost over time for different
auto-scaling approaches on AWS. It can be noted that blind
killing combined with Apache Stratos incur the highest cost



Table II. BEHAVIOUR OF PROACTIVE SOLUTION WITH DIFFERENT VM
INSTANCE TYPES.

Units Resource Cost Violation Cost Total Cost Violation Percentage

X 3.25 0.235 3.485 9.26

2X 3.617 0.240 3.857 3.738

4X 5.09 0.192 5.282 0.932

(of over 34USD in 400 minutes), while proactive solution
combined with smart killing leads to the lowest cost (less than
3USD in 400 minutes). From the results in resource utilization
and cost graphs, it can be observed that by introducing smart
killing feature for auto-scaling improves resource utilization
while reducing the cost significantly, regardless of the auto-
scaling approach (reactive or proactive). It can be concluded
that the proposed proactive scaling approach outperforms the
reactive threshold approach, considering QoS and resource
cost.

Figure 6. Variation of cost with time for different auto-scaling solutions.

2) Evaluation of Scaling Algorithm With Different Instance
Sizes: We evaluated the behavior of proposed scaling algo-
rithm with different instance types.

It can be observed from Table II that smaller the VM
instance, lower the resource cost and total cost. But percentage
of performance violations tends to be higher. Alterntively,
larger VM instances incur higher resource cost but lower
performance degradation. Considering the added complexity
in handling heterogeneous platforms, we entirely focused on
homogeneous clusters when implementing the solution on
Apache Stratos.

VI. EXPERIMENTAL RESULTS

Here we evaluate inteliScaler’s integration into Apache
Stratos by deploying it on top of AWS EC2. We begin by

presenting our experimental methodology and then discuss the
results.

A. Experimental Setup

To evaluate the scaling process of Apache Stratos we
cannot simply use either a simulation or the built-in mock IaaS
feature, as they do not capture every aspect of a real system
such as fault detection and handling, spawn time delay, and in-
flight requests count. Hence, we deployed Apache Stratos 4.1.4
on AWS EC2 in a distributed setup to run a few workloads
using the RUBiS benchmark and allow the system to scale
using default policies.

Configuration details of the setup are given in Table III.
At the time of evaluation, the latest stable version of Apache
Stratos was 4.1.4. Apache ActiveMQ was chosen as it is the
message broker recommended by Apache Stratos, although
other brokers like RabbitMQ are also known to be supported.
We tried almost all the options for the load balancer that
Apache Stratos supported (according to their documentation),
but we could only manage to set up HAProxy as the load
balancer with a few modifications on our own. WSO2 CEP was
the only choice for the event processor as the implementation is
heavily coupled with the architecture of WSO2 CEP. We used
a central database and scaled only the PHP instances, avoiding
the trouble of syncing databases across multiple nodes which
would have been the case, if a MySQL was also provisioned
on a cluster. For the central database we had two setups,
one using AWS RDS and the other with our own dedicated
server. Because AWS RDS had certain limitations such as
the maximum number of concurrent connections, we set up
our own node by tuning its performance to handle up to
5,000 concurrent connections. Two extra nodes were set up on
the same network to enumerate the workload for the RUBiS
application deployed on top of Apache Stratos.

Table III. APACHE STRATOS SETUP CONFIGURATION.

Stratos

Compo-

nent

Implementation EC2

Instance

Type

Details

Stratos Apache Stratos

4.1.4

t2.medium This includes Stratos Manager

and Auto-Scaler

Message

Broker

Apache ActiveMQ

1.8

t2.medium Used to communicate be-

tween each component and

Cartridge Agent on each node

Load Bal-

ancer

HAProxy 1.6 t2.medium One static load balancer to

handle application requests

Complex

Event

Processor

WSO2 CEP 3.1 r3.large Aggregates all health stats

gathered from each node in

real-time and produces aver-

age, gradient, derivative val-

ues

Database MySQL r3.large Central database for all nodes

to read/write

Load

Generator

Rain Tool Kit r3.large Creates multiple connections

with the Load Balancer to em-

ulate the stipulated users and

their actions

B. Evaluation

We ran several workloads, with drastically different char-
acteristics, on the actual implementation of Apache Stratos and
inteliScaler deployed in AWS EC2 setup.



1) Workload I: First we tested the same workload that
was used earlier as shown in Table IV against inteliScaler.
Configurations of Stratos are given in Table V.

It is clear that inteliScaler outperforms both the
configurations of Stratos as shown in Fig. 7 inteliScaler
has allocated less number of VM’s to handle the same
workload. In terms of QoS, inteliScaler has a success ratio
of 91.54%, which is significantly higher than the 80% of
low threshold configuration and 68% of high threshold
configuration. Number of time out errors is also significantly
low where in inteliScaler it is 0.8%, while low threshold
configuration has 0.9% and high threshold configuration has
4.2%.

Table IV. WORKLOAD USED FOR AWS PERFORMANCE ANALYSIS.

Segment 1 2 3 4 5 6

Duration (seconds) 240 240 240 240 240 240

Users 400 800 1600 3200 800 400

Transition (seconds) 30 30 30 30 30 30

Table V. AUTO-SCALING POLICY OF STRATOS FOR DIFFERENT

CONFIGURATIONS.

Setup Load Average Memory Consumption Request in Flight

Low Threshold 70 70 100

High Threshold 95 95 150

Figure 7. Performance comparison in AWS EC2 setup for Workload I.

Table VI. QOS SUMMARY FOR EVALUATION FOR WORKLOAD I ON

AWS EC2

Test Case Average Requests Requests Time Out

Response Time Initiated Completed Errors

low threshold 6.3839 s 254535 203067 2511

high threshold 4.4954 s 280477 191891 11863

inteliScaler 5.1288 s 286180 261979 2278

2) Workload II: We also tested both Stratos and inteliScaler
with a fluctuating yet growing workload as described in Table
VII.

As shown in Fig. 8, inteliScaler has the lowest resource
allocation of 10 VMs whereas for the same workload Apache
Stratos allocated 15 VMs, saving the cost for 5 VMs. Also the
QoS of inteliScaler is better than Stratos as shown in Table
VIII. inteliScaler has responded to 94.24% of the requests

generated whereas Stratos has responded to only 57.41% of the
total requests generated. There are significant number of time
outs and drop off errors in Stratos compared to inteliScaler,
which is the reason for these figures.

Table VII. WORKLOAD II FOR AWS SETUP.

Segment 1 2 3 4 5 6 7 8 9 10

Duration (s) 90 90 90 90 90 90 90 90 90 90

Users (×100) 2 1 4 2 6 4 8 6 10 8

Transition (s) 30 30 30 30 30 30 30 30 30 30

Figure 8. Performance comparison in AWS EC2 setup for Workload II.

Table VIII. QOS SUMMARY FOR EVALUATION OF WORKLOAD II ON

AWS EC2.

Test Case Average Requests Requests Time Out

Response Time Initiated Completed Errors

Stratos 2.7150 s 178848 102671 16257

inteliScaler 1.1207 s 214041 201719 6988

VII. FURTHER IMPROVEMENTS

The current implementation of inteliScaler is focused on
a limited set of instances, since we were not able to conduct
research for all the instance types available at AWS due to
the cost factor. For completion of the solution, a performance
model is required for mapping the workload requirement with a
suitable instance type configuration available at the IaaS layer.
This depends heavily on the application being deployed, but
in general we will be able to accurately define the limitations
of each resource type for a generic workload.

Our solution, as well as the current auto-scaling imple-
mentation on Apache Stratos assumes homogeneity of the
worker nodes (members or instances). Although this results in
a simpler resource management model, it prevents Stratos from
enjoying many benefits and profitable aspects of heterogeneous
deployment, including spawning of instances with special-
ized resource capacities (e.g., a memory-optimized instance,
when the cluster is facing memory deficiencies rather than
high load averages or requests-in-flight counts) and choosing



combinations of different instance types to fulfill a given
resource demand while minimizing the total cost. However,
implementing heterogeneity on the current Stratos architecture
would include a substantial amount of changes to the existing
code base. Moreover, our initial work on this aspect shows that
the problem is difficult to model and solution space resulting
from a simple model is too large to search.

VIII. SUMMARY

Auto-scaling is of vital importance to realize the full
potential of cloud computing. However, current auto-scaling
solutions available in PaaS cloud remain primitive. Almost
all the PaaS providers rely on reactive approach and lacks
workload awareness needed for detailed decision making
and rely on rule-based decision making which expects users
to set threshold parameters. To address these problems, we
proposed auto-scaling solution called inteliScaler with an
ensemble workload prediction mechanism based on time
series and machine learning techniques, scaling algorithm
that considers both cost and QoS factors when deciding
the amount of resources required, and pricing model-aware
decision making. We tested the proposed model in two levels.
First, we evaluated the performance of individual components
on simulation set-up with various workload datasets available.
Second, we developed an entire solution on Apache Stratos
PaaS framework and tested with a deployment on Amazon
EC2. Empirical results in both levels show significant benefits
for PaaS users. It is possible to improve the proposed heuristic
by introducing different penalty functions based on the level
of service expected by different users. For example, an
application (deployed on a PaaS) that supports free vs. paid
versions would require different service levels. Our proposed
solution can be adapted for such scenarios by defining
different penalty functions based on the type of subscription.
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