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Abstract—Elasticity is a key feature of cloud computing where
resources are allocated and released according to user demands.
Reactive auto scaling, in which the scaling actions take place just
after meeting the triggering thresholds, suffers from several issues
like risk of under provisioning at peak loads and over provisioning
during other times. Proactive scaling solutions, where future
resource demand can be forecast and necessary scaling actions
enacted beforehand, can overcome these issues. Nevertheless, the
effectiveness of such proactive scaling solutions depends on the
accuracy of the prediction method(s) adopted. We propose a
forecasting technique to enhance the accuracy of workload fore-
casting in cloud auto-scalers. An ensemble workload prediction
mechanism based on time series and machine learning techniques
is proposed to make more accurate predictions on drastically
different workload patterns. In this work, we initially evaluated
several forecasting models for their applicability in forecasting
different workload patterns. The proposed ensemble technique
is then implemented using three well-known forecasting models
and tested for three real-world workloads. Simulation results
show that our ensemble method produces significantly lower
forecast errors compared to the use of individual models and
the prediction technique employed in Apache Stratos, an open
source PaaS platform.

Keywords–auto scaling; cloud computing; time series analysis;
workload prediction

I. INTRODUCTION

Cloud computing has already gained ground with advan-
tages like scalability, on-demand resource provisioning, and
high availability. According to the NIST definition [1], cloud
computing refers to the delivery of computing resources, such
as networks, servers, storage, applications, and platforms, over
the network based on user demand. Based on this definition, it
is evident that the elasticity is a major requirement of any cloud
platform, which is often achieved via an auto scaling process.
Auto scaling refers to the dynamic allocation and release of
resources for a cloud application, in order to optimize its
resource utilization while minimizing the cost, as well as
achieving the desired Quality of Service (QoS) and availability
goals [2], [3].

Unlike in the case of IaaS, if the application itself runs
on a PaaS, the burden of auto scaling is delegated from the
developer to the PaaS provider. Operating at the PaaS layer
enables the auto-scaling services to use high level, application-
specific metrics such as the number of requests in flight, as well
as low level, cloud-specific metrics such as CPU and memory
utilization. The same PaaS platform may run vastly different

applications with different workload patterns, complicating the
auto-scaling process.

Auto scaling can be achieved via either reactive or proac-
tive approaches. In reactive, threshold-based auto scaling, users
have to specify thresholds for workload metrics, and scaling
would occur only after such thresholds are exceeded [4].
These thresholds must be high enough for efficient resource
utilization, as well as low enough to compensate for delays
in formulating and executing scaling actions. Although this
seems to be the most customizable approach from the user’s
perspective, it has several weaknesses [5] such as the inability
to adapt to workload patterns (e.g., thrashing during load
fluctuations), low resource utilization and higher cost under
smaller thresholds, and the risk of service/QoS degradation
under larger thresholds and rapidly increasing workloads.
Coming up with an optimum threshold in a reactive auto-
scaling system is nontrivial and requires application-specific
experience and expertise.

In the proactive approach, resource requirements for the
future time horizon are forecasted based on the demand
history. With accurate predictions, an application can take
early scaling decisions so that when the workload reaches
a particular level, the required resources would have already
been allocated. Consequently, resource utilization can be safely
increased to a maximum level. However, the reliability of such
an approach depends mainly on the accuracy of the predicted
values. Because we forecast the future workload requirement
from historical data of the respective measures, time series
forecasting is applicable for this scenario.

We have identified the following challenges specific to
workload prediction for auto scaling:

• A PaaS cloud system may be used to build different
applications with vastly different workload patterns.
Hence, the workload prediction model should not tend
to get overfitted to a specific workload pattern.

• As the workload dataset grows with time, the predic-
tive model should evolve and continuously learn the
latest workload characteristics.

• The workload predictor should be able to produce
results within a bounded time.

• Given that the time horizon for the prediction should
be chosen based on the physical constraints like up-
time and graceful shutdown time of Virtual Machines



(VMs), the predictor should be able to produce suffi-
ciently accurate results over a sufficiently large time
horizon.

The objective of this work is to come up with a prediction
method that can be trained in real-time to capture the latest
trends and provide sufficiently accurate results for drastically
different workload patterns. First, we evaluate the ability of ex-
isting models to produce accurate real-time predictions against
evolving datasets. In this evaluation we tested time series
forecasting methods, including statistical methods like ARIMA
and exponential model, machine learning models like neural
networks, and a prediction method used in Apache Stratos, an
open source PaaS framework. Through this, we demonstrate
the limitations in existing solutions in accurately predicting
real-world workload traces, and highlight the need for more
accurate predictions. Next, we propose an ensemble technique
which combines results from a neural network, ARIMA and
exponential models. Based on simulations with three publicly
available workload traces (two real-world cloud workload
datasets and the Google cluster dataset), we demonstrate that
the proposed ensemble model outperforms each of the tested
individual models.

The rest of the paper is structured as follows: Section 2
outlines related work on cloud workload prediction and their
limitations. Section 3 describes and evaluates several existing
time-series forecasting techniques while exploring their ability
to provide accurate predictions on publicly available datasets
with predictable patterns under real-time training scenarios.
Section 4 introduces the proposed ensemble technique and pre-
diction algorithm. Section 5 presents the performance analysis,
and concluding remarks are presented in Section 6.

II. RELATED WORK

There is a significant number of already established re-
search work in the workload prediction domain. Kupferman
et al. [6] applied single order auto-regression to predict the
request rate and found that its accuracy depends on several
parameters such as the size of the input window and the
horizon window. Exponential smoothing is popularly used
for prediction. Mi et al. [7] also used quadratic exponential
smoothing against real workload traces such as World Cup
98 [8], and showed good results. Auto-Regressive Moving
Average (ARMA) method is one of the dominant time series
analysis techniques for workload and resource usage pre-
diction. Roy et al. [3] used a second order ARMA filter
for workload prediction on the World Cup 98 traces and
showed accurate results. Bunch et al. [9] used an exponential
smoothing algorithm to forecast how many requests to expect
and how many requests will be enqueued for the next t seconds
for an auto scaler in PaaS cloud.

Machine learning techniques like neural networks, regres-
sion, and Hidden Markov Model (HMM) have been applied
by several authors for workload prediction. Yang et al. [10]
have used a sliding window based Linear Regression Model
(LRM) for workload prediction and showed a lower prediction
deviation. Khan et al. [11] used Hidden Markov Model to
explore the temporal correlations in workload pattern changes.
Several work also focus on using history window values as
the input for a neural network [12]. However, the accuracy of
such method depends on the input window size.

The related work outlined above primarily focus on a
specific dataset. Hence, the resulting predictive model might
not be a good fit for scenarios involving multiple applications
with drastically different workload characteristics. In some of
the solutions the predictive model has been derived using
offline training on datasets, so that dynamic adaptation to
current workload changes may not be possible. However, these
may not work well on PasS platforms as the same platform
may be used to build different applications with drastically
different workload characteristics.

From a mathematical perspective, certain preconditions
have to be fulfilled by a given dataset for it to be fitted satisfac-
torily using time-series prediction techniques like exponential
moving average and ARIMA. It is quite unlikely that datasets
from all applications will meet these preconditions. Therefore,
a given prediction technique may require its parameters to be
adjusted to fit to specific datasets. Hence, identifying optimum
parameters for the model should happen dynamically via an
online training process, rather than using predefined constants
defined during the offline training.

III. EVALUATION OF EXISTING MODELS

In this analysis, we analyze the ability of several prediction
techniques to learn from the current workload history, and
predict future workload while the workload itself is evolving.
We simulated an online training scenario by streaming data
points of the workload time series one at a time to each
prediction technique. We then plotted the one-step lookahead
predictions from the resulting prediction technique at each
stage, against the real data points. For evaluation purpose, we
used the forecast package in R [13] which contains time-series
datasets in different domains with typical patterns like trends,
cycles and seasonality factors.

A. Datasets

The objective of this evaluation is to identify how well
an individual prediction method can make predictions based
only on past data. Here we used several public datasets with
predictable patterns from the R forecast package, some of
which are not directly related to cloud workloads. Selection
of multiple datasets enables us to evaluate the time-series pre-
diction techniques under several probable workload patterns.
Nevertheless, the experimental results in Section 5, where we
compare the performance of the proposed ensemble technique
vs. existing methods, are based only on two real-world cloud
workloads and the Google cluster dataset, in addition to those
found in the forecast package.

Following datasets from the R forecast package is selected
for the evaluation:

• euretail – Quarterly retail trade index in the Euro area
(17 countries) from 1996 - 2011, covering wholesale
and retail trade, and repair of motor vehicles and
motorcycles (Index: 2005 = 100).

• sunspotarea – Annual averages of the daily sunspot
areas (in units of millionths of a hemisphere) for the
full sun.

• oil – Annual oil production (millions of tonnes) from
Saudi Arabia between 1965 - 2010.



In addition, as a representative of real-world workloads,
we have used a CPU usage trace obtained from a dedicated
standalone server from a private cloud. The server has a
Linux-based operating system and is equipped with four Quad-
Core AMD Opteron CPUs and 16 GB of RAM. We have
also obtained a trace of queued HTTP requests over time by
replaying an access log of a content-based website against a
hosted copy of itself.

B. Time Series Forecasting Techniques

We chose three widely used prediction methods from
literature, namely ARIMA, neural network, and exponential
models, as well as the existing workload prediction technique
in Apache Stratos.

1) ARIMA: Autoregressive Integrated Moving Average
(ARIMA) model combines two models called autoregression
(of order p) and moving average (of order q).

Autoregression Model AR(p) – In an autoregression model, the
variable of interest is forecast using a linear combination of
past values of the variable. The term autoregression indicates
that it is a regression of the variable against itself. Thus, an
autoregressive model of order p can be written as:

xt = c+ φ1xt−1 + φ2xt−2 + ...+ φpxt−p + et (1)

where c is a constant and et is white noise. Autoregressive
models are typically restricted to stationary data, and some
constraints are applied on the values of the parameters [14].

Moving Average Model MA(q) – This model uses past forecast
errors in a regression-like model.

xt = c+ θ1et−1 + θ2et−2 + ...+ θqet−q (2)

xt can be thought of as a weighted moving average of the last
few forecast errors. By combining differencing with autore-
gression and a moving average model, non-seasonal ARIMA
model can be obtained. The full model can be written as:

x′
t = c+ φ1x

′
t−1 + φ2x

′
t−2 + ...+ φpx

′
t−p

+et + θ1et−1 + θ2et−2 + ...+ θqet−q

(3)

The predictors on the right hand side include both the
lagged values of Xt and lagged errors. This is called an
ARIMA(p, d, q) model, where p and q are the orders of the
autoregressive and moving average parts respectively, and d is
the degree of first differencing involved.

2) Neural Networks: Artificial Neural Networks (ANNs)
are a class of nonlinear, and data-driven models. In the domain
of time series forecasting, neural network is an excellent
alternative for existing statistical models which require some
assumptions to be satisfied in the time series. Ability of
modeling nonlinear relationships is the major advantage in
neural networks. Auto regressive feed forward neural networks
[14] are the specialized neural networks in the time series
forecasting domain. They consist of a feed forward structure
of three types of layers, an input layer, one or more hidden
layer, and an output layer. Each layer consists with nodes, to
those in the immediate next layer by acyclic links which have
associated weights. In auto-regressive neural networks, lagged

values of the time series (input window) are injected as the
inputs and train the weights of the model to forecast for a
given time horizon by using the past history of the dataset.

3) Exponential Model: Several selected versions of expo-
nential models are presented next.

Exponential Weighted Moving Average (EWMA) – In EWMA
methods, forecasts are calculated using weighted averages
where the weights decrease exponentially as the observations
come from further in the past. The smallest weights are associ-
ated with the oldest observations [14], [15], [16]. Exponential
smoothing can be indicated by the following equation:

x̂t+1|t = αxt + α(1− α)x̂t|t−1 (4)

x̂t+1|t = αxt + α(1− α)xt−1 + α(1− α)2xt−2 + ... (5)

where 0 ≤ α ≤ 1 is the smoothing parameter. x̂t+1|t, the one-
step-ahead forecast for time (t+1), is a weighted average of all
the observations in the series x1, ..., xt. The rate at which the
weights decrease is controlled by the parameter α. If α is small
(i.e., close to 0), more weight is given to observations from
the distant past. If α is large (i.e., close to 1), more weight is
given to the more recent observations. This method is suitable
for forecasting data with no trend or seasonal patterns.

Following variants of exponential smoothing are suitable
for forecasting time series with different characteristics [14]:

• Double Exponential Smoothing – Applicable to a time
series with a linear trend.

• Triple Exponential Smoothing – Applicable to a time
series with a trend and seasonality.

• Holt’s Linear Trend Model – Extended simple expo-
nential smoothing to allow forecasting of data with a
trend.

• Exponential Trend Model – Applicable when the trend
in the forecast function is can be exponential rather
than linear.

• Damped Trend Method – Dampens the trend to a flat
line some time in the future to model the general
nature of practical time series.

• Holt-Winters Seasonal Method – Applicable to a time
series with adaptive or multiplicative trends and sea-
sonality.

4) Prediction method in Apache Stratos: Apache Stratos
[17] is an open source PaaS framework where a user can build
a PaaS system on top of an existing IaaS cloud. The auto-
scaling solution in Stratos uses a workload demand prediction
method which can be explained using the motion equation in
physics. The method calculates one lookahead prediction using
the workload demand in the last period as follows [17]:

St+h|t = uth+
1

2
ath

2 (6)

x̂t+h = avg(x)t + St+h|t (7)

where St+h|t is the predicted change of workload for time (t+
h), x is the workload metric considered, x̂t+h is the predicted
workload metric for time (t + h), ut and at are the first and
second derivatives of the metric within the t-th interval, and h
is the time horizon considered.



C. Time Series Forecasting Library

We used the following time series forecasting models in
R forecast package [13] to implement each of the selected
forecasting solution:

auto.arima() – Finds the best fitted ARIMA model and
approximates the model coefficients by minimizing the past
forecast error [14].

ets() – Finds out the best fitted exponential model among the
family of exponential models (simple exponential smoothing,
Holt’s linear trend, exponential trend, and Holt-Winters sea-
sonal method) automatically and calculates the model coeffi-
cients by reducing the past forecast error [14].

nnetar() – Feed-forward neural networks with a single hidden
layer and lagged inputs for forecasting univariate time series.

D. Error Measures

For quantitative analysis, we used the following two error
measures:

• Root Mean Squared Errors (RMSEs) are of the same
scale as the data. As it is scale dependent, it cannot
be used to make comparisons between series that are
of different scales [14]. RMSE can be represented as
follows:

RMSE =

√

∑n

t=1(x̂t − xt)2

n

where xt is the real value at time t, x̂t is the forecast
at time t and n is the number of data points in dataset.

• Percentage errors have the advantage of being scale-
independent, but they overemphasize the errors for
values that are actually small. Percentage errors can
be represented as follows:

MAPE =
100

n

n
∑

t=1

∣

∣

∣

∣

x̂t − xt

xt

∣

∣

∣

∣

where xt is the real value at time t, x̂t is the forecast
at time t and n is the number of data points in dataset.

E. Observations

Fig. 1 to 5 show the comparison of each of the time-series
prediction models under five datasets. Solid lines represent the
actual time series whereas dashed lines represent the predicted
values from each method. The respective error measures are
presented in Tables 1 and 2. The bold cells represent the
minimum RMSE and MAPE values, while the underlined cells
represent the maximum RMSE and MAPE values.

According to the results obtained, there is no single model
which performs well in all online training scenarios. Each
model will fit the datasets which satisfy its assumptions. Where
they are not satisfied, performance of some models would
be below the average. For example, while neural networks
perform well on the oil dataset, they perform poorly on euretail
dataset. The current prediction method from Stratos has the
highest mean errors almost all the cases considered.

The analysis primarily depicts that there is no single
method which guarantees best performance in all cases. A

Table I. COMPARISON OF ERRORS FOR STANDARD DATASETS USING

RMSE AND MAPE

Model
sunspotarea Euretail oil

RMSE MAPE RMSE MAPE RMSE MAPE

ARIMA 382.360 1.359 0.524 0.004 55.313 0.251

Exponential 505.750 1.161 0.576 0.011 54.989 0.250

Neural net. 473.924 0.465 1.882 0.006 51.616 0.160

Current 546.938 0.965 0.650 0.004 61.807 0.585

Table II. COMPARISON OF ERRORS FOR CLOUD DATASETS USING

RMSE AND MAPE

Model
Memory CPU

RMSE MAPE RMSE MAPE

ARIMA 7.238 0.136 2.976 0.036

Exponential 7.005 0.160 3.150 0.048

Neural net. 8.169 0.135 2.792 0.031

Stratos 9.928 0.172 5.692 0.024

method which performs well in some dataset might perform
worse in another dataset. As an autonomous PaaS auto-scaler
should be able to work with any type of workload pattern,
the prediction method should be able to give good enough
estimates in an average case without producing large errors on
any specific workload pattern.

The idea of ensemble learning is quite frequently used in
situations where there is no dominant technique which can
provide the best results, but it is possible to obtain good enough
results by combining results from several weak learners. In
the general forecasting domain we can see several models
combining techniques proposed by several researchers [18],
[19], [20]. There are several views regarding model selection
and combining multiple models. While some researchers claim
that combined methods improve accuracy, others claim that
they suppress the effects of large errors from individual models
rather than improving the overall accuracy. According to the
literature, there are multiple ways of combining individual
results [21]:

• Simple average – Obtaining the average of the forecast
from each model as the forecast of ensemble.

• Median-based – Obtaining the median of the forecast
from each model as the forecast of ensemble.

• Trimmed average – Obtaining the average of forecasts
while excluding the worst performing models.

• Error-based combining – Assigning the weight of each
model to be the inverse of the past forecast error (e.g.,
MAE, MAPE, or RMSE) of each model.

• Variance-based method – Determining the optimal
weights through minimization of the total sum of
squared error.

IV. PROPOSED ENSEMBLE PREDICTION METHOD

We propose an error-based ensemble technique for work-
load prediction. Our approach tries to address situations where
offline training is not possible due to workload history data
not being available at the beginning of the prediction process.
While the auto scaler is in operation, workload history gets
accumulated based on the user’s workload requirement (e.g.,
CPU, memory, and request count). However, the prediction
method should still be able to predict the future time hori-
zon based on the initially available dataset. After the initial



Figure 1. Comparison of predictions for sunspotarea dataset.

Figure 2. Comparison of predictions for euretail dataset.

Figure 3. Comparison of predictions for oil dataset.

Figure 4. Comparison of predictions for CPU utilization

Figure 5. Comparison of predictions for queued HTTP request count.

predictions, actual data will become available for the next
time periods, so that we can accumulate the latest actual data
into the workload history and use them for the next forecast
horizon.

In existing error-based combining techniques, mean values
of error metrics (e.g., absolute error, absolute percentage error,
squared error, etc.) are taken into account while calculating the
contributing factors for individual methods.

Considering the currently available dataset in the time
series as X = [x1, x2, ..xt] we want to calculate predictions for
xt+h. Let the final predicted value be x̂t+h and the predicted

value from the i-th model for xt+h be x̂
(i)
t+h. We define x̂t+h

as a weighted sum of predictions from each model:

x̂t+h =

k
∑

i=1

wix̂
(i)
t+h ∀k ∈ {1, 2, 3, ..., n} (8)

where wi is the weight assigned to the i-th forecasting
method. To ensure unbiasedness, it is often assumed that the
weights add up to unity [21]. Hence, we define the contribution
from the i-th model to the final result as ci, so that the same
equation can be redefined as:

x̂t+h =

∑k

i=1 cix̂
(i)
t+h

∑k

i=1 ci
(9)

where wi =
ci∑

k
j=1 cj

. As
∑k

j=1 wj = 1, this weight assignment

is unbiased and would result in the weighted average of the
predictions.

A. Determination of Contribution Coefficients

To determine the optimal contribution coefficients in our
proposed ensemble technique, we use past forecast errors
for each model. In our prediction problem, accuracy of the
prediction of the next time horizon is more significant. Hence,
the contributions are calculated using inverses of the past
forecasting error measures. There are various choices for error
measurement, and next we discuss several selected measures.

1) Error of the Most Recent Prediction: This model only
captures how accurately the last prediction has been calculated
by the model. Hence, it does not capture the overall accuracy. If
the model has repeatedly made large errors in past predictions,
except the most recent one, contribution coefficients are biased
and may lead to error-prone decisions.



Absolute Error of the Last Prediction can be defined as follows:

AEt = |x̂t − xt|

Squared error of the Last Prediction, which penalizes errors
more efficiently than the absolute error, can be defined as
follows:

SEt = (x̂t − xt)
2

Whereas Absolute Percentage/Relative Error is sensitive to
errors related to values of small magnitudes and is defined
as:

APEt = 100

∣

∣

∣

∣

x̂t − xt

xt

∣

∣

∣

∣

2) Average Error Over Prediction History: This measure
captures the overall error in past predictions, where all past
errors have the same level of significance. If a method has
produced larger errors in past predictions, the contribution may
be reduced significantly even though it may be producing the
best predictions for more recent values.

In this case Mean Absolute Error/Root Mean Squared Error
can be defined as:

RMSE =

√

∑n

t=1(x̂t − xt)2

n

Whereas Mean Absolute Percentage Error is defined as:

MAPE =
100

n

n
∑

t=1

∣

∣

∣

∣

x̂t − xt

xt

∣

∣

∣

∣

While calculating the contributions based on errors, models
whose errors are based on the last observation overlook overall
accuracy and assign high importance to the last prediction
error. On the other extreme, the average errors assume that all
the last prediction errors have the same level of significance.
However, what we really need is an error measure which has a
larger contribution from the errors in more recent predictions
and smaller contributions from early predictions. Exponential
smoothing provides the best fit for our requirement, so that we
can calculate the contribution as the errors are fitted under the
exponential model. Here, the contribution coefficients ci,t are
calculated from the inverses of the fitted past forecast errors
(et). If bi,t is the fitted value of the past forecasting error from
the i-th model at the t-th time interval, ci,t =

1
bi,t

. et can be

the absolute error, squared error, or absolute relative error at
t-th prediction. bi,t can be defined as follows:

bi,t = αe(i,t) + (1− α)b(i,t−1) (10)

where 0 ≤ α ≤ 1

bi,t = αe(i,t) + α(1− α)e(i,t−1) + α(1− α)2e(i,t−2) + ...

ci,t =
1

bi,t
(11)

B. Selection of Models

The above mentioned error-based weighting mechanism
can be used with different combinations of forecasting models.
To preserve the ability to cope up with drastically different
workload patterns, models used in ensemble techniques should
conceptually be different and capture the different characteris-
tics of datasets.

ARIMA assumes a linear form of the model, i.e., a linear
correlation structure is assumed among the time-series values.
Therefore, it cannot capture non-linear patterns [19]. Alterna-
tively, seasonal ARIMA models can fit the seasonal factors of
the time series accurately.

A neural network can capture complex nonlinear relation-
ships within a time series. It has a data driven approach which
can extract patterns within a time series without predefined
knowledge on the relationships inside data. But neural net-
works require sufficiently large amounts of data points to
accurately identify patterns. Observations in Section 3 also
show that neural networks make larger errors in initial stages
due to lack of data, but perform well after they correctly
identify the relationships. Time to train a neural networks is
also significant factor. As we propose real-time training, the
data point history should not be allowed to grow arbitrarily
large, which would slow down the prediction process.

Contrary to the general belief that ARIMA is more general
than exponential models, there are no equivalent ARIMA
models for some of the nonlinear exponential models (e.g.,
the exponential trend model) [14]. Therefore, to preserve
generality, we also choose the exponential model as part of
our ensemble solution.

There is a possibility that the above models may produce
out-of-range forecasts, especially in the case of early-stage
neural networks. To compensate for this, we use a naive
forecast model which forecasts the last known data point for
the next interval as well.

C. Proposed Prediction Algorithm

Proposed workload prediction technique can be explained
using the following algorithm:

1) Consider the time-series history window at time t,
X = [x1, x2, ..xt].

2) Calculate forecast value from the i-th time-series

forecasting method over the time horizon h, x̂
(i)
t+h∀i ∈

{1, 2, 3, ..., k}, where k is the number of forecasting
methods used.

3) Fit a history window for the last t actual data points
using the i-th method.

4) Use an exponential smoothing model to fit the errors
resulting from Step 3, and use them to calculate the
contribution factor for the i-th model at t, c(i,t).

5) Calculate the point forecast for time (t + h) using

x̂t+h =
∑k

i=1 c(i,t)x̂
(i)
t+h∑

k
i=1 c(i,t)

.

6) At time (t + 1), actual value for time (t + 1) will
be available. Add this value to the history window
X = X ∪ {xt+1} and repeat from Step 2.



Table III. COMPARISON OF PERFORMANCE ON STANDARD DATASETS.
THE ARMA-BASED MODEL HAS BEEN TAKEN FROM [3].

Model
sunspotarea euretail oil

RMSE MAPE RMSE MAPE RMSE MAPE

ARIMA 382.360 1.359 0.524 0.004 55.313 0.251

Exponential 505.750 1.161 0.576 0.011 54.989 0.251

Neural net. 473.924 0.465 1.882 0.006 51.616 0.160

Stratos 546.938 0.965 0.650 0.004 61.807 0.585

ARMA-based model 530.160 1.181 0.600 0.004 51.986 0.250

Mean ensemble 369.525 0.519 0.697 0.003 49.922 0.227

Median ensemble 397.439 0.777 0.531 0.004 50.046 0.250

Proposed ensemble 356.315 0.393 0.537 0.003 50.147 0.256

Table IV. COMPARISON OF PERFORMANCE ON CLOUD DATASETS.

Model
Google Cluster Memory CPU

RMSE MAPE RMSE MAPE RMSE MAPE

ARIMA 12.963 0.051 7.238 0.136 2.976 0.036

Exponential 12.886 0.041 7.005 0.160 3.150 0.048

Neural net. 12.530 0.036 8.169 0.135 2.792 0.031

Stratos 19.757 0.116 9.928 0.172 5.692 0.024

ARMA-based model 12.549 0.069 7.185 0.180 3.477 0.023

Mean Ensemble 12.099 0.051 7.036 0.130 2.900 0.029

Median Ensemble 12.059 0.055 7.010 0.141 2.944 0.028

Proposed Ensemble 11.934 0.027 6.972 0.129 2.873 0.027

V. EXPERIMENTAL RESULTS

We implemented the proposed ensemble-based prediction
algorithm in R using time series and machine learning model
implementations in the forecast package. For our ensemble
solution we selected ARIMA, Neural Network, Exponential
Model and Naive Prediction as the base models. After emper-
ical evaluation of various error measurements for contribution
coefficient calculation, we used square root of the exponen-
tially fitted squared forecasting error as the error measure
for calculating the contribution coefficients from each model

(where ei,t is defined as e(i,t) = (xt − x̂
(i)
t )2 in Equation 10

and c(i,t) =
1√
b(i,t)

in Equation 11).

We tested proposed technique against the publicly available
datasets mentioned in Section 4.2, as well as several real-world
cloud workloads [22] collected from server applications. Our
proposed solution is compared with each individual models
in ensemble solution, two other popular ensemble techniques
(mean ensemble, median ensemble), existing prediction tech-
nique in Apache Stratos and prediction model describes in [3].

In addition to the cloud workload dataset used in Section
3, we also used a portion of the Google cluster dataset [23] in
evaluating our ensemble model. The dataset includes a series
of task execution details against their starting and ending times.
Due to the large size of the dataset, we have summarized it
to a suitably concise set of values by summing up numbers of
started tasks in each time unit over the transformed time scale.

Boldfaced cells in Tables 3 and 4 contain the smallest error
values for each dataset under evaluation, whereas underlined
cells contain the worst performance observed for each dataset
among all methods. As shown visually in Fig. 6, although the
ensemble model shows smoothened predictions at the start of
the Google cluster dataset, it eventually manages to capture
finer details of the series as the available dataset grows during
real-time training.

According to the results obtained, the existing model
from Stratos suffers from errors of the largest magnitude in
several datasets, while each individual model shows largest

Figure 6. Ensemble prediction applied to Google cluster dataset.

errors in at least one dataset. While the mean and median
ensemble methods generally perform better than individual
models, they suffer when one or more of their base models
perform significant errors, due to the lack of consideration
of such forecasting errors resulting from individual models.
Our proposed prediction technique provides the best prediction
results for several datasets while never performing worse than
the individual prediction methods, because the contribution
from each of its base models is explicitly governed by its
accuracy.

VI. SUMMARY

Providing better QoS while maintaining lower resource
lease costs in a PaaS system is extremely challenging for a
reactive, threshold-based auto scaling solution. Even though
proactive solutions can overcome these challenges, they are
dependent on highly accurate prediction mechanisms. Exist-
ing workload prediction techniques which mainly focus on
single, offline-trained models do not work well with heteroge-
neous PaaS applications with drastically different and varying
workload patterns. To address this problem, we proposed an
ensemble prediction technique that combines predicted values
from different time-series prediction techniques. We train each
model in real time (as in a functional auto scaler) and combine
the forecasts based on weights calculated using inverse errors
of fitted values for the training data. Rather than taking only the
last forecasting error or the mean over all the past errors, we
used exponential smoothing to fit the past forecasting error of
each model. We implemented the proposed ensemble technique
using four popular forecasting models and tested it on three
publicly available datasets, two cloud workload dataset, and
the Google cluster dataset. Experimental results show that the
proposed ensemble prediction technique produces the least
errors for many of the drastically different datasets consid-
ered, and it always performs better on any dataset where an
individual model performs worse. As the proposed forecasting
method should generate the forecast within a bounded time,
we limit the size of the input training window. Further work
is needed to identify the optimum input window size that
would maximize accuracy while not violating the temporal
restrictions on calculating the forecasts in real-time.
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