
Trust Enhancement Issues in Program Repair

Yannic Noller∗

National University of Singapore

Singapore

yannic.noller@acm.org

Ridwan Shariffdeen∗

National University of Singapore

Singapore

ridwan@comp.nus.edu.sg

Xiang Gao†

National University of Singapore

Singapore

gaoxiang@comp.nus.edu.sg

Abhik Roychoudhury
National University of Singapore

Singapore

abhik@comp.nus.edu.sg

ABSTRACT

Automated program repair is an emerging technology that seeks

to automatically rectify bugs and vulnerabilities using learning,

search, and semantic analysis. Trust in automatically generated

patches is necessary for achieving greater adoption of program

repair. Towards this goal, we survey more than 100 software practi-

tioners to understand the artifacts and setups needed to enhance

trust in automatically generated patches. Based on the feedback

from the survey on developer preferences, we quantitatively evalu-

ate existing test-suite based program repair tools. We find that they

cannot produce high-quality patches within a top-10 ranking and

an acceptable time period of 1 hour. The developer feedback from

our qualitative study and the observations from our quantitative

examination of existing repair tools point to actionable insights to

drive program repair research. Specifically, we note that producing

repairs within an acceptable time-bound is very much dependent on

leveraging an abstract search space representation of a rich enough

search space. Moreover, while additional developer inputs are valu-

able for generating or ranking patches, developers do not seem to

be interested in a significant human-in-the-loop interaction.

ACM Reference Format:

Yannic Noller, Ridwan Shariffdeen, Xiang Gao, and Abhik Roychoudhury.

2022. Trust Enhancement Issues in ProgramRepair. In 44th International Con-

ference on Software Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA,

USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3510003.

3510040

1 INTRODUCTION

Automated program repair technologies [14] are getting increased

attention. In recent times, program repair has found its way into

the automated fixing of mobile apps in the SapFix project in Face-

book [28], automated repair bots as evidenced by the Repairnator

∗Joint first authors
†Alternate email: gaoxiang9430@gmail.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510040

project [44], and has found certain acceptability in companies such

as Bloomberg [17]. While all of these are promising, large-scale

adoption of program repair where it is well integrated into our

programming environments is considerably out of reach as of now.

In this article, we reflect on the impediments towards the usage

of program repair by developers. There can be many challenges

towards the adoption of program repair like scalability, applicabil-

ity, and developer acceptability. A lot of the research on program

repair has focused on scalability to large programs and also to large

search spaces [12, 26, 28, 31]. Similarly, there have been various

works on generating multi-line fixes [13, 31], or on transplanting

patches from one version to another [41] — to cover various use

cases or scenarios of program repair.

Surprisingly, there is very little literature or systematic studies

from either academia or industry on the developer trust in program

repair. In particular, what changes do we need to bring into the pro-

gram repair process so that it becomes viable to have conversations

on its wide-scale adoption? Part of the gulf in terms of lack of trust

comes from a lack of specifications — since the intended behavior

of the program is not formally documented, it is hard to trust that

the automatically generated patches meet this intended behavior.

Overall, we seek to examine whether the developer’s reluctance

to use program repair may partially stem from not relying on au-

tomatically generated code. This can have profound implications

because of recent developments on AI-based pair programming1,

which holds out promise for significant parts of coding in the future

to be accomplished via automated code generation.

In this article, we specifically study the issues involved in enhanc-

ing developer trust on automatically generated patches. Towards

this goal, we first settle on the research questions related to de-

veloper trust in automatically generated patches. These questions

are divided into two categories (a) expectations of developers from

automatic repair technologies, and (b) understanding the possible

shortfall of existing program repair technologies with respect to

developer expectations. To understand the developer expectations

from program repair, we outline the following research questions.

RQ1 To what extent are the developers interested to apply auto-

mated program repair (henceforth called APR), and how do

they envision using it?

RQ2 Can software developers provide additional inputs that

would cause higher trust in generated patches? If yes, what

kind of inputs can they provide?

1Github Copilot https://copilot.github.com/

2228

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yannic Noller, Ridwan Shariffdeen, Xiang Gao, and Abhik Roychoudhury

RQ3 What evidence from APR will increase developer trust in

the patches produced?

For a comprehensive assessment of the research questions, we en-

gage in both qualitative and quantitative studies. Our assessment

of the questions primarily comes in three parts. To understand the

developer expectations from program repair, we conduct a detailed

survey (with 35 questions) among more than 100 professional soft-

ware practitioners. Most of our survey respondents are developers,

with a few coming from more senior roles such as architects. The

survey results amount to both quantitative and qualitative inputs

on the developer expectations since we curate and analyze respon-

dents’ comments on topics such as the expected evidence for patch

correctness provided by automated repair techniques. Based on the

survey findings, we note that developers are largely open-minded

in terms of trying out a small number of patches (no more than 10)

from automated repair techniques, as long as these patches are pro-

duced within a reasonable time, say less than 1 hour. Furthermore,

the developers are open to receiving specifications from the pro-

gram repair method (amounting to evidence of patch correctness).

They are also open-minded in terms of providing additional specifi-

cations to drive program repair. The most common specifications

the developers are ready to give and receive are tests.

Based on the comments received from survey participants, we

then conduct a quantitative comparison of certain well-known pro-

gram repair tools on the widely used ManyBugs benchmarks [20].

To understand the possible deficiency of existing program repair

techniques with respect to outlined developer expectations as found

from the survey, we formulate the following research questions.

RQ4 Can existing APR techniques pinpoint high-quality patches

in the top-ranking (e.g., among top-10) patches within a

tolerable time limit (e.g., 0.5/1/2 hours)?

RQ5 What is the impact of additional inputs (say, fix locations

and additional passing test cases) on the efficacy of APR?

We note that many of the existing papers on program repair use lib-

eral timeout periods to generate repairs, while in our experiments

the timeout is strictly maintained at no more than one hour. We are

also restricted to observing the first few patches, and we examine

the impact of the fix localization by either providing and not pro-

viding the developer location. Based on a quantitative comparison

of well-known repair tools Angelix [31], CPR [40], GenProg [21],

Prophet [26] and Fix2Fit [12] — we conclude that the search space

representation has a significant role in deriving plausible/correct

patches within an acceptable time period. In other words, an ab-

stract representation of the search space (aided by constraints that

are managed efficiently or aided by program equivalence relations)

is at least as critical as a smart search algorithm to navigate the

patch space. We discuss how the tools can be improved to meet de-

veloper expectations, either by achieving compilation-free repair or

by navigating/suggesting abstract patches with the help of simple

constraints (such as interval constraints).

Last but not the least, we note that program repair can be seen

as automated code generation at a micro-scale. By studying the

trust issues in automated repair, we can also obtain an initial un-

derstanding of trust enhancement in automatically generated code.

2 SPECIFICATIONS IN PROGRAM REPAIR

The goal of APR is to correct buggy programs to satisfy given

specifications. In this section, we review these specifications and

discuss how they can impact patch quality.

Test Suites as Specification. APR techniques such as GenProg [21]

and Prophet [26] treat test suites as correctness specifications. The

test suite usually includes a set of passing tests and at least one

failing test. The repair goal is to correct the buggy program to pass

all the given test suites. Although test suites are widely available,

they are usually incomplete specifications that specify part of the

intended program behaviors. Hence, the automatically generated

patch may overfit the tests, meaning that the patched program may

still fail on program inputs outside the given tests. For instance, the

following is a buggy implementation that copies n characters from
source array src to destination array dest, and returns the number
of copied characters. A buffer overflow happens at line 6 when the

size of src or dest is less than n. By taking the following three tests
(one of them can trigger this bug) as specification, a produced patch

(++index<n ↦→ ++index<n && index<3) can make the program
pass the given tests. Obviously, the patched program is still buggy

on test inputs outside the given tests.

1 int lenStrncpy(char[] src , char[] dest , int n){
2 if(src == NULL || dest == NULL)
3 return 0;
4 int index = -1;
5 while (++ index < n)
6 dest[index] = src[index]; // buffer overflow
7 return index;
8 }

Type src dest n Output Expected Output

Passing SOF COM 3 3 3

Passing DHT APP0 3 3 3

Failing APP0 DQT 4 *crash 3

Constraints as Specification. Instead of relying on tests, another

line of APR research, e.g., ExtractFix [13] and CPR [40], take con-

straints as correctness specifications. Constraints have the potential

to represent a range of inputs or even the whole input space. Driven

by constraints, the goal of APR is to patch the program to satisfy

the constraints. However, unlike the test suite, the constraints are

not always available in practice; for this reason, techniques like An-

gelix [31] and SemFix [34] take tests as specifications but extract

constraints from tests. Certain existing APR techniques take as in-

put coarse-grained constraints, such as assertions or crash-free con-

straints. For instance, ExtractFix relies on predefined templates

to infer constraints that can completely fix vulnerabilities. For the

above example, according to the template for buffer overflow, the in-

ferred constraint is index<sizeof(src)&&index<sizeof(dest).
Once the patched program satisfies this constraint, it is guaranteed

that the buffer overflow is completely fixed. Guarantees from such

fixing of overflows/crashes do not amount to a guarantee of the

full functional correctness of the fixed program.

Code Patterns as Specification. Besides test suites and constraints,

code patterns can also serve as specifications for repair systems.

Specifically, given a buggy program that violates a code pattern, the

2229

Trust Enhancement Issues in Program Repair ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

repair goal is to correct the program to satisfy the rules defined by

the code pattern. The code patterns can be manually defined [42],

from static analyzers [45], automatically mined from large code

repositories [3, 4], etc. Similar to the inferred constraints, code

patterns cannot ensure functionality correctness.

3 SURVEY METHODOLOGY

Since constructing formal program specifications is notoriously

difficult, the specifications used by APR tools cannot ensure patch

correctness. Unreliable overfitting patches cause developers to lose

trust in APR tools. This motivates us to enquire/survey developers

on how APR can be enhanced to gain their trust.

We designed and conducted a survey with software practitioners,

specifically to answer the first three research questions (RQ1-3).

In June 2021, we distributed a questionnaire to understand how

developers envision the usage of automated program repair and

what can be provided to increase trust in automatically generated

patches. Note that we followed our institutional guidelines and

received approval from the Institutional Review Board (IRB) of our

organization prior to administering the survey.

Survey Instrument. We asked in total 35 questions about how trust-

worthy APR can be deployed in practice. Our questions are struc-

tured into six categories:

C1 Usage of APR (RQ1): whether and how developers would en-

gage with APR.

C2 Availability of inputs/specifications (RQ2): what kind of input

artifacts developers can provide for APR techniques.

C3 Impact on trust (RQ2): how additional input artifacts would

impact the trust in auto- generated patches.

C4 Explanations (RQ3): what kind of evidence/explanation devel-

opers expect for auto-generated patches.

C5 Usage of APR side-products (RQ3): what side-products of APR

are useful for the developers, e.g., for manual bug-fixing.

C6 Background: the role and experience of the participants in the

software development process.

C1 will provide insights for RQ1, C2 and C3 for RQ2, and C4 and C5

for RQ3. The questions are a combination of open-ended questions

like "How would you like to engage with an APR tool?" and close-

ended questions like "Would it increase your trust in auto-generated

patches if additional artifacts such as tests/assertions are used during

patching?" with Multiple Choice or a 5-point Likert scale. The ques-

tionnaire itself was created and deployed with Microsoft Forms. A

complete list of our questions can be found in Table 1 and in our

replication package [35].

Participants. We distributed the survey via two channels: (1) Ama-

zon MTurk, and (2) personalized email invitations to contacts from

global-wide companies. As incentives, we offered each participant

on MTurk 10 USD as compensation, while for each other partici-

pant, we donated 2 USD to a COVID-19 charity fund. We received

134 responses from MTurk. To filter low-quality and non-genuine

responses, we followed the known principles [10] and used quality-

control questions. In particular, wemanually inspected all responses

and filtered out answers that are irrelevant to the actual question:

(1) we checked for suspicious answers, which overload keywords,

e.g., many responses included amessage on Annual Percentage Rate

Figure 1: Responses for Q6.1What is your (main) role in the

software development process?

Figure 2: Responses for Q6.2 How long have you worked in

software development?

(APR) instead of automated program repair, and then (2) we checked

the consistency of the responses with quality-control questions,

e.g., "Please describe briefly your role in software development"

and "Name your primary activity in software development" at the

beginning of the survey. After this manual post-processing, we

ended up with 34 valid responses from MTurk. From our company

contacts, we received 81 responses, from which all have been gen-

uine answers. From the total of 115 valid responses, we selected 103

relevant responses, which excluded responses from participants

who classified themselves as Project Manager, Product Owner, Data

Scientist, or Researcher. Our goal was to include answers from soft-

ware practitioners that have daily, hands-on experience in software

development. Figure 1 and 2 show the roles and experiences for the

final subset of the 103 participants.

Analysis. For the questions with a 5-point Likert scale, we analyzed

the distribution of negative (1 and 2), neutral (3), and positive (4 and

5) responses. For the Multiple Choice questions, we analyzed which

choices were selected most, while the open-ended "Other" choices

were analyzed and mapped to the existing choices or treated as

new ones if necessary. For all open-ended questions, we performed

a qualitative content analysis coding [39] to summarize the themes

and opinions. The first iteration of the analysis and coding was done

by one author, followed by the review of the other authors. In the

following sections, we will discuss the most mentioned responses,

and indicate in the brackets behind the responses how often the

topics are mentioned among the 103 participants. We use the chi-

square goodness of fit test [37] (𝛼 = 0.01) to check that our results
are significant and not a random observation. We also show the

significance of the obtained trends/majorities with the Binomial

Test [1] (𝛼 = 0.05). We present the corresponding 𝑃 values. All data,
statistics, and codes are included in our replication package [35].

4 SURVEY RESULTS

4.1 Developer engagement with APR (RQ1)

In this section, we discuss the responses for the questions in cat-

egory C1 and question Q2.8, which was explicitly exploring how

2230

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yannic Noller, Ridwan Shariffdeen, Xiang Gao, and Abhik Roychoudhury

Table 1: Complete list of questions from the developer survey. In total 35 questions in 6 categories.

Category Question Type

Q1.1 Are you willing to review patches that are submitted by APR techniques? 5-Point Likert Scale
Q1.2 How many auto-generated patches would you be willing to review before losing trust/interest in the technique? Selection + Other. . .

C1 Usage of Q1.3 How much time would you be giving to any APR technique to produce results? Selection + Other. . .
APR Q1.4 How much time do you spend on average to fix a bug? Selection + Other. . .

Q1.5 Do you trust a patch that has been adopted from another location/application, where a similar patch was already accepted by
other developers?

5-Point Likert Scale

Q1.6 Would it increase your confidence in automatically generated patches if some kind of additional input (e.g., user-provided test
cases) were considered?

5-Point Likert Scale

Q1.7 Besides some additional input that is taken into account, what other mechanism do you see to increase the trust in auto-generated
patches?

Open-Ended

Q2.1 Can you provide additional test cases (i.e., inputs and expected outputs) relevant for the reported bug? 5-Point Likert Scale
C2 Availability Q2.2 Can you provide additional assertions as program instrumentation about the correct behavior? 5-Point Likert Scale
of Inputs Q2.3 Can you provide a specification for the correct behavior as logical constraint? 5-Point Likert Scale

Q2.4 Would you be fine with classifying auto-generated input/output pairs as incorrect or correct behavior? 5-Point Likert Scale
Q2.5 How many of such queries would you answer? Selection + Other. . .
Q2.6 For how long would you be willing to answer such queries? Selection + Other. . .
Q2.7 What other type of input (e.g., specification or artifact) can you provide that might help to generate patches? Open-Ended
Q2.8 Please describe how you would like to engage with an APR tool. For example shortly describe the dialogue between you (as
user of the APR tool) and the APR tool. Which input would you pass to the APR tool? What do you expect from the APR tool?

Open-Ended

Q3.1 Would it increase your trust in auto-generated patches if additional artifacts such as tests/assertions are used during patching? 5-Point Likert Scale
C3 Impact on trust Q3.2 Which of the following additional artifacts will increase your trust? Multiple Choice

Q3.3 What are other additional artifacts that will increase your trust? Open-Ended

Q4.1 Would it increase your trust when the APR technique shows you the code coverage achieved by the executed test cases that
are used to construct the repair?

5-Point Likert Scale

C4 Explanations
for generated

Q4.2 Would it increase your trust when the APR technique presents the ratio of input space that has been successfully tested by the
inputs used to drive the repair?

5-Point Likert Scale

patches Q4.3 What other type of evidence or explanation would you like to come with the patches, so that you can select an automatically
generated patch candidate with confidence?

Open-Ended

Q5.1 Which of the following information (i.e., potential side-products of APR) would be helpful to validate the patch? Multiple Choice
C5 Usage of APR Q5.2 What other information (i.e., potential side-products of APR) would be helpful to validate the patch? Open-Ended
side-products Q5.3 Which of the following information (i.e., potential side-products of APR) would help you to fix the problem yourself (without

using generated patches)?
Multiple Choice

Q5.4 What other information (i.e., potential side-products of APR) would help you to fix the problem yourself (without using
generated patches)?

Open-Ended

Q6.1 What is your (main) role in the software development process? Selection + Other. . .
C6 Background Q6.2 How long have you worked in software development? Selection

Q6.3 How long have you worked in your current role? Selection
Q6.4 How would you characterize the organization where you are employed for software development related activities? Selection + Other. . .
Q6.5 What is your highest education degree? Selection + Other. . .
Q6.6 What is your primary programming language? Selection + Other. . .
Q6.7 What is your secondary programming language? Selection + Other. . .
Q6.8 How familiar are you with Automated Program Repair? 5-Point Likert Scale
Q6.9 Are you applying any Automated Program Repair technique at work? Yes/No
Q6.10 Which Automated Program Repair technique are you applying at work? Open-Ended

Figure 3: Results for the questions with the 5-point Likert Scale (103 responses).

the participants want to engage with an APR tool. First of all, a

strong majority (72% of the responses, 𝑃 < .001) indicate that the
participants are willing to review auto-generated patches (see Q1.1

in Figure 3). This finding generally confirms the efforts in the APR

community to develop such techniques. Only 7% of the participants

are reluctant to apply APR techniques in their work. As shown in

Figure 4, we note that 72% (𝑃 < .001) of the participants want to
review only up to 5 patches, while only 22% would review up to 10

patches. Furthermore, 6% mention that it would depend on the spe-

cific scenario. At the same time, the participants expect relatively

quick results: 63% (𝑃 = .003) would not wait longer than one hour,
of which the majority (72% of them, 𝑃 < .001) prefer to not even

2231

Trust Enhancement Issues in Program Repair ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 4: Cumulative illustration of the responses for Q1.2

How many auto-generated patches would you be willing to

review before losing trust/interest in the technique?

wait longer than 30 minutes. The expected time certainly depends

on the concrete deployment, e.g., repair can also be deployed along

a nightly Continuous Integration (CI) pipeline, but our results in-

dicate that direct support of manual bug fixing requires quick fix

suggestion or hints. In fact, 82% (𝑃 < .001) of the participants state
that they usually spend not more than 2 hours on average to fix a

bug, and hence, the APR techniques need to be fast to provide a

benefit for the developer. To increase trust in the generated patches,

80% (𝑃 < .001) agree that additional artifacts (e.g., test cases), which
are provided as input for APR, are useful (see Q1.6 in Figure 3). As

a consistency check, we asked a similar question at a later point

(see Q3.1 in Figure 3), and obtained that even 84% (𝑃 < .001) agree
that additional artifacts can increase trust. The most mentioned

other mechanisms to increase trust are the extensive validation of

the patches with a test suite and static analysis tools (17/103), the

actual manual investigation of the patches (10/103), the reputation

of the APR tool itself (9/103), the explanation of patches (8/103), and

the provisioning of additionally generated tests (7/103).

RQ1 – Acceptability of APR: Additional user-provided arti-

facts like test cases are helpful to increase trust in automatically

generated patches. However, our results indicate that full de-

veloper trust requires a manual patch review. At the same time,

test reports of automated dynamic and static analysis, as well as

explanations of the patch, can facilitate the reviewing effort.

The responses for the explicit question about developers’ envi-

sioned engagement with APR tools (Q2.8) can be categorized into

four areas: the extent of interaction, the type of input, the expected

output, and the expected integration into the development workflow.

Interaction. Most participants (71/103, 𝑃 < .001) mention that they
prefer a rather low amount of interaction, i.e., after providing the

initial input to the APR technique, there will be no further inter-

action. Only a few responses (6/103) mention the one-time option

to provide more test cases or some sort of specification to narrow

down the search space when APR runs into a timeout, or the gener-

ated fixes are not correct. Only 3 participants envision a high level

of interaction, e.g., repeated querying of relevant test cases.

Input. Many participants appear ready to provide failing test cases

(22/103) or relevant test cases (20/103). Others mentioned that APR

should take a bug report as input (15/103), which can include the

stack trace, details of the environment, and execution logs. Some

also mentioned that they envision only the provision of the bare

minimum, i.e., the program itself or the repository with the source

code (11/103).

Output. Besides the generated patches, the most mentioned helpful

output from an APR tool is an explanation of the fixed issue includ-

ing its root cause (9/103). This answer is followed by the requirement

to present not only one patch but a list of potential patches (8/103).

Additionally, some participants mentioned that it would be helpful

to produce a comprehensive test report (6/103).

Integration. The most mentioned integration mechanism is to in-

volve APR smoothly in the DevOps pipeline (17/103), e.g., whenever

a failing test is detected by the CI pipeline, the APR would be trig-

gered to generate appropriate fix suggestions. A developer would

manually review the failed test(s) and the suggested patches. Along

with the integration the participants mentioned that the primary

goal of APR should be to save time for the developers (8/103).

RQ1 – Interaction with APR: Developers envision a low

amount of interaction with APR, e.g., by only providing ini-

tial artifacts like test cases. APR should quickly (within 30 min -

60 min) generate a small number (between 5 and 10) of patches.

Moreover, APR needs to be integrated into the existing DevOps

pipelines to support the development workflow.

4.2 Availability/Impact of Artifacts (RQ2)

In this section, we look more closely in the categories C2 and C3 to

investigate which additional artifacts can be provided by developers,

and how these artifacts influence the trust in APR. We first explore

the availability of additional test cases (69% positive, 𝑃 < .001), pro-
gram assertions (71% positive, 𝑃 < .001), and logical constraints (59%
positive, 𝑃 = .024) (see the results for Q2.1, Q2.2, and Q2.3 in Figure
3). Furthermore, 58% (𝑃 = .038) of the participants are positive about
answering queries to classify generated tests as failing or passing.

This can be understood as participants want to have low interaction

(i.e., asking questions to the tool), but if the tool is able to issue

queries, they are ready to answer some of them (typically respon-

dents prefer to answer no more than 10 queries, 𝑃 = .001). Based
on the results for open-ended question Q2.7, the majority of the

participants (70/103, 𝑃 < .001) do not see any other additional arti-
facts (beyond tests/assertions/logical-constraints/user-queries) that

they could provide to APR. The most mentioned responses by other

participants are different forms of requirements specification (7/103),

e.g., written in a domain-specific language, execution logs (6/103),

documentation of interfaces with data types and expected value

ranges (5/103), error stack traces (4/103), relevant source code loca-

tions (3/103), and reference solutions (3/103), e.g., existing solutions

for similar problems.

RQ2 – Artifact Availability: Software developers can provide

additional artifacts like test cases, program assertions, logical

constraints, execution logs, and relevant source code locations.

Regarding an increase in trust in patches through the incorpo-

ration of additional artifacts driving repair, 93% (𝑃 < .001) of the
participants agree that additional test cases are helpful (see Figure 5).

This is also interesting from the perspective of recent automated

repair tools [40, 52] which perform automated test generation to

achieve less overfitting patches. Logical constraints (70%, 𝑃 < .001)

2232

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yannic Noller, Ridwan Shariffdeen, Xiang Gao, and Abhik Roychoudhury

Figure 5: Responses for Q3.2 Which of the following addi-

tional artifacts will increase your trust?

and program assertions (68%, 𝑃 < .001) perform worse in this re-

spect. Although user queries allow more interaction with the APR

technique, they would not necessarily increase trust more than

the other artifacts. Only 59% (𝑃 = .024) agreed on their benefit.

Most of the participants (88/103, 𝑃 < .001) did not mention a trust
gain by other artifacts. However, some participants (3/103) men-

tioned non-functional requirements like performance or security

aspects, which is related to a concern that auto-generated patches

may harm existing performance characteristics or introduce new

security vulnerabilities.

RQ2 – Impact on Trust: Additional test cases would have a

great impact on the trustworthiness of APR. There exists the

possibility of automatically generating tests to increase trust in

the auto-generated patches.

4.3 Patch Explanation/Evidence (RQ3)

In this section, we explore which patch evidence and APR side-

products can support trust in APR (see categories C4 and C5). We

first proposed two possible pieces of evidence that could be pre-

sented along with the patches: the code coverage achieved by the

executed test cases that are used to construct the repair, and the ra-

tio of input space that has been successfully tested by the automated

patch validation. 76% (𝑃 < .001) of the participants agree that code
coverage would increase trust, and 71% (𝑃 < .001) agree with the
input ratio (see Q4.1 and Q4.2 in Figure 3). The majority of the par-

ticipants (78/103, 𝑃 < .001) do not mention other types of evidence
that would help to select a patch with confidence. Nevertheless, the

most mentioned response is a fix summary (10/103), i.e., an expla-

nation of what has been fixed including the root cause of the issue,

how it has been fixed, and how it can prevent future issues. Other

participants mention the success rate in case of patch transplants

(5/103), and a test report summarizing the patch validation results

(3/103). These responses match the observations for RQ1, where

we asked how developers want to interact with trustworthy APR

and what output they expect.

RQ3 – Patch Evidence: Software developers want to see evi-

dence for the patch’s correctness to efficiently select patch candi-

dates. Developers want to see information such as code coverage

as well as the ratio of the covered input space.

A straightforward way to provide explanations and evidence is

to provide outputs that are already created by APR as side-products.

We listed some of them and asked the participants to select which of

them would be helpful to validate the patches (see results in Figure

6). 85% (𝑃 < .001) agree that the identified fault and fix locations

Figure 6: Responses for Q5.1 Which of the following infor-

mation (i.e., potential side-products of APR) would be helpful

to validate the patch?

Figure 7: Responses for Q5.3 Which of the following infor-

mation (i.e., potential side-products of APR) would help you

tofix the problemyourself (without using generated patches)?

are helpful to validate the patch followed by the generated test

cases with 79% (𝑃 < .001) agreement. In addition, a few participants

emphasize the importance of a test report (4/103), an explanation of

the root cause and the fix attempt (4/103).

Finally, we explore which side-products are most useful for de-

velopers, even when APR cannot identify the correct patch. Figure 7

shows that the identified fault and fix locations are of most interest

(82%, 𝑃 < .001), followed by the generated test cases (75%, 𝑃 < .001).
Very few participants add that an issue summary (2/103) and the

potential results of a data flow analysis (2/103) could be helpful too.

RQ3 – APR’s Side-Products: Our results indicate that side-

products of APR like the fault and fix locations and the generated

test cases can assist manual patch validation, and hence, enhance

trust in APR.

5 EVALUATION METHODOLOGY

We now investigate to which extent existing APR techniques sup-

port the expectations and requirements collected with our survey.

Not all aspects of our developer survey can be easily evaluated. For

example, the evaluation of the amount of interaction, the integra-

tion into existing workflows, the output format for the efficient

patch selection, and the patch explanations, require additional case

studies and further user experiments. In this evaluation, we focus

on the quantitative evaluation of the relatively short patching time

(30-60 min), the limited number of patches to manually investigate

(5 to 10), handling of additional test cases and logical constraints,

and the ability to generate a repair at a provided fix location. We

explore whether state-of-the-art repair techniques can produce cor-

rect patches under configurations that match these expectations

and requirements. Specifically, we aim to provide answers to the

research questions RQ4 and RQ5.

APR Representatives. In our evaluation, we selected tools to repre-

sent a wide spectrum of state-of-the-art APR techniques: search-

based (GenProg [21]), semantic-based (Angelix [31]), the combi-

nation of search-based and learning-based (Prophet [26]), and the

integration of testing inside repair to tackle overfitting (Fix2Fit [12],

2233

Trust Enhancement Issues in Program Repair ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

CPR [40]). We further selected tools that apply on C due to our

evaluation subjects. GenProg [21] is a search-based program re-

pair tool that evolves the buggy program by mutating program

statements. It is a well-known representative of the generate-and-

validate repair techniques. Angelix [31] is a semantic program

repair technique that applies symbolic execution to extract con-

straints, which serve as a specification for subsequent program

synthesis. Prophet [26] combines search-based program repair

with machine learning. It learns a code correctness model from

open-source software repositories to prioritize and rank the gener-

ated patches. Fix2Fit [12] combines search-based program repair

with fuzzing. It uses grey-box fuzzing to generate additional test

inputs to filter overfitting patches that crash the program. The test

generation prioritizes tests that refine an equivalence class based

patch space representation. CPR [40] uses semantic program re-

pair and concolic test generation for refining abstract patches and

for discarding overfitting patches. It takes a logical constraint as

additional user input to reason about the generated tests inputs.

Subject Programs. We use the ManyBugs [20] benchmark, which

is a well-established benchmark in APR, and all of the considered

techniques/tools also use (some of) these subjects in their eval-

uation. Therefore, it is a benchmark for which it is known that

the examined tools can identify patches. Our goal is to evaluate

whether they can still identify patches with changed/limited envi-

ronmental conditions (e.g., timeout, set of available test cases etc).

The benchmark set consists of 185 defects in 9 open-source projects.

For each subject, ManyBugs includes a test suite created by the

original developers. Note that all of the studied repair techniques

require and/or can incorporate a test suite in their repair process.

For our evaluation, we filter the 185 defects that have been fixed

by the developer at a single fix location. We remove defects from

"Valgrind" and "FBC" subjects due to the inability to reproduce the

defects. Finally, we obtain 60 defects in 6 different open-source

projects (see Table 2).

Table 2: Experiment subjects and their details

Program Description LOC Defects Tests

LibTIFF Image processing library 77k 7 78

lighttpd Web server 62k 2 295

PHP Interpreter 1046k 43 8471

GMP Math Library 145k 1 146

Gzip Data compression program 491k 3 12

Python Interpreter 407k 4 355

Experimental Configurations and Setup. All tools are configured

to run in full-exploration mode; which will continue to generate

patches even after finding one plausible patch until the timeout or

the completion of exploring the search space. To study the impact of

fix locations and test case variations (see RQ5), we evaluate each tool

using different configurations (see Table 3). In each configuration

we provide the relevant source file to all techniques, however, with

"developer fix location" we provide the exact source line number as

well. Note that each setup uses a 1-hour timeout, which is chosen

based on our survey responses: 63% (𝑃 = .003) of all participants
would expect results within 1 hour.

Table 3: Experiment configurations

ID Fix Location Passing Tests Timeout

EC1 tool fault localization 100% 1hr

EC2 developer fix location 100% 1hr

EC3 developer fix location 0% 1hr

EC4 developer fix location 50% 1hr

Evaluation Metrics. In order to assess the techniques and support

the answering of our research questions, we consider the following

eight metrics, which are inspired by existing studies in APR [24, 25]:

M1 the search space size of the repair tool, M2 the number of

enumerated/explored patches,M3 the explored ratio with respect

to the search space,M4 the number of non-compilable patches,M5

the number of non-plausible patches, i.e., patches that have been

explored but ruled out because existing or generated test cases are

violated,M6 the number of plausible patches,M7 the number of

correct patches, andM8 the highest rank of a correct patch. M1-M6

help to analyze the overall search space creation and navigation of

each technique. The definition of the search space size (M1) for the

defect, as well as the definition of an enumerated/explored patch

(M2), vary for each tool. We include all experiment protocols in our

replication artifact, which describes how to collect these metrics for

each tool. M7-M9 assess the repair outcome, i.e., the identification

of the correct patch. We define a patch as correct whenever it is

semantically equivalent to the developer patch that is provided

in our benchmark. To check for the correct patch, we manually

investigated only the top-10 ranked patches because our survey

concluded that developers would not explore beyond that. Note that

not all techniques provide a patch ranking (e.g., Angelix, GenProg,

and Fix2Fit). In these cases, we use the order of generation.

Hardware. All our experiments were conducted using Docker con-

tainers on top of AWS (Amazon Web Services) EC2 instances. We

used the c5a.8xlarge instance type, which provides 32 vCPU pro-

cessing power and 64GiB memory capacity.

Replication. Our replication package contains all experiment logs

and subjects, as well as protocols that define the methodology used

to analyze the output of each repair tool [35]. In particular, we

describe how to retrieve each evaluation metric for the specific

repair techniques.

Experimental Setup: Our experiments are meant to investi-

gate specific aspects concerning the increase of program repair

adoption based on the results of our developer survey. We as-

sume that the developer/user is not an APR expert, and hence,

would use the default parameter settings instead of fine-tuning

or extending the tools. Furthermore, our experiments use strict

timeouts and computation power restrictions. Other setups can

lead to different and better results.

6 EVALUATION RESULTS

Table 4 summarizes our evaluation results. For each APR technique

we show its performance under the given experimental configura-

tion (see Table 3). Each cell shows |𝑃𝑃𝑙𝑎𝑢𝑠 |/|𝑃𝐶𝑜𝑟𝑟 |, where |𝑃𝑃𝑙𝑎𝑢𝑠 |

2234

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yannic Noller, Ridwan Shariffdeen, Xiang Gao, and Abhik Roychoudhury

Table 4: Experimental results for the various configurations. Each cell shows the number of subjects, for which the technique

was able to identify at least one Plausible/Correct patch with regard to the specific configuration. Please also see "Threats to

Validity of Experimental Results" in Section 7 to understand the context of these results fully.

Subject Def.
Angelix Prophet GenProg Fix2Fit CPR

EC1 EC2 EC3 EC4 EC1 EC2 EC3 EC4 EC1 EC2 EC3 EC4 EC1 EC2 EC3 EC4 EC2 EC3 EC4

LibTIFF 7 3/1 3/1 3/1 3/1 1/0 1/0 1/0 1/0 5/0 5/0 5/0 5/0 5/1 4/1 4/1 4/1 4/2 4/2 4/2

lighttpd 2 - - - - 1/0 0/0 0/0 0/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 - - -

PHP 43 0/0 0/0 0/0 0/0 0/0 0/0 2/1 3/1 0/0 0/0 10/1 0/0 8/1 4/2 7/2 5/1 5/4 5/4 5/4

GMP 1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 1/1 1/1 1/1

Gzip 3 0/0 1/0 1/0 1/0 0/0 1/1 1/1 1/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 3/1 3/1 3/1

Python 4 - - - - 0/0 1/1 1/1 1/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 - - -

Overall 60 3/1 4/1 4/1 4/1 2/0 3/2 5/3 6/3 6/0 6/0 16/1 6/0 14/2 9/3 12/3 10/2 13/8 13/8 13/8

Table 5: Experimental results for the average exploration ra-

tio |PExpl | for EC1 and EC2.

Subject
Angelix Prophet GenProg Fix2Fit

EC1 EC2 EC1 EC2 EC1 EC2 EC1 EC2

LibTIFF 86 100 24 93 1 27 100 100

lighttpd - - 20 100 <1 51 100 100

PHP 96 100 22 96 <1 91 63 80

GMP 100 100 41 100 5 100 - -

Gzip 100 100 6 100 18 100 100 100

Python - - 14 100 1 100 - -

Overall 95 100 21 98 4 78 91 95

is the number of defects for which the tool was able to generate

at least one plausible patch (i.e., M6), and similarly |𝑃𝐶𝑜𝑟𝑟 | is the
number of defects for which the tool was able to generate a correct

patch among the top-10 plausible patches. For example, the LibTIFF

project has 7 defects, for which Angelix was able to generate 3

plausible and 1 correct patch for the setup EC1 (i.e., 1-hour timeout,

tool fault localization, and all available test cases). Due to limita-

tions in its symbolic execution engine KLEE [6], Angelix and CPR

do not support lighttpd and python, and the corresponding cells

are marked with “-”. For CPR, we are not able to produce results

for EC1 because it does not have its own fault localization, and

hence, requires the fix location as an input. Additionally, Table 5

presents the average patch exploration/enumeration ratio |𝑃𝐸𝑥𝑝𝑙 |
of the techniques with respect to the patch space size, computed as

a percentage of M2/M1 for each defect considered in each subject.

6.1 APR within realistic boundaries (RQ4)

The numbers in Table 4 show that the overall repair success is

limited. For example, Fix2Fit can generate plausible patches for

14 defects with EC1, while CPR can generate correct patches for 8

defects given the correct fix location. Compared to previous stud-

ies, the number of plausible patches is lower in our experiments,

mainly due to the 1-hour timeout. Prior research on program re-

pair have experimented with 10-hour [30], 12-hour [26, 31] and

24-hour [12] timeouts, and determined whether a correct patch can

be identified among all generated plausible patches. The focus of

these prior experiments was to evaluate the capability to generate

a patch, whereas, in our work, we focus on the performance within

a tolerable time limit set by developers. Not only the timeout but

also a scenario-specific parameter fine-tuning can affect the results

greatly. For example, when we modify the synthesis-level parameter

of Angelix (a parameter that modulates the back-end synthesis

of the tool, and hence, can affect the search space), we can see

additional patches being generated, such as for a defect in Libtiff

(3edb9cd), in the EC3 configuration. Our reported experiments only

use the default parameters. In future, for a full investigation of the

repair tools’ capabilities, it will therefore be necessary to conduct

an exploration of the parameter choices in each repair tool, which

has not been done in this paper.

RQ4 – Repair Success: Under our tight constraints (i.e., the 1-

hour timeout and the top-10 ranking) and their default parameter

setups, current state-of-the-art repair techniques cannot identify

many plausible patches for the ManyBugs benchmark.

Automated program repair tools are only beginning to gain

adoption, and are still an emerging technology. We want to identify

what it would take to increase the adoption of program repair.

In general, the repair success of an APR technique is determined

by (1) its search space, (2) the exploration of this search space,

and (3) the ranking of the identified patches. In a nutshell, this

means, if the correct patch is not in the search space, the technique

cannot identify it. If the correct patch is in the search space, but

APR does not identify it within a given timeout or other resource

limitations, it cannot report it as a plausible patch. If it identifies the

patch within the available resources but cannot pinpoint it in the

(potentially huge) space of generated patches, the user/developer

will not recognize it. By means of these impediments for repair

success in real-world scenarios, we examine the considered repair

techniques. Our goal is to identify the concepts in APR that are

necessary to achieve the developers’ expectations, and hence, to

improve the state-of-the-art approaches.

Search Space. Table 5 shows that Angelix explores almost its com-

plete search space within the 1-hour timeout, while Table 4 shows

that it can identify plausible patches for only one defect (with EC1).

As described in [30], the program transformations (to build/explore

the search space) by Angelix only include the modification of exist-

ing side-effect-free integer expressions/conditions and the addition

of if-guards. Therefore, we conclude that Angelix’s search space is

too limited to contain the correct patches. The other techniques, on

the other hand, consider larger search spaces. Prophet also con-

siders the insertion of statements and the replacement of function

2235

Trust Enhancement Issues in Program Repair ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

calls. GenProg can insert/remove any available program statement.

Fix2Fit uses the search space by f1x [30], which combines the

search spaces of Angelix and Prophet to generate a larger search

space. CPR uses the same program transformations as Angelix but

is designed to easily incorporate additional user inputs like custom

synthesis components to enrich its search space.

RQ4 – Search Space: Successful repair techniques need to con-

sider a wide range of program transformations and should be

able to take user input into account to enrich the search space.

Search Space Exploration. Prophet and GenProg show a relatively

low exploration ratio with 21% and 4% respectively (see EC1 in

Table 5), which leads to a low number of plausible patches in our

experiments. Instead, Fix2Fit fully explores the patch search space

for most of the considered defects (except for PHP), which leads to a

high possibility of finding a plausible patch. CPR (not shown in the

table) fully explores its search space in our experiments. In contrast

to Prophet and GenProg, Fix2Fit and CPR perform grouping and

abstracting of patches, to explore them efficiently. Fix2Fit groups

the patches by their behavior on test inputs and uses this equiv-

alence relation to guide the generation of additional inputs. CPR

represents the search space in terms of abstract patches, which

are patch templates, accompanied by constraints. CPR enumerates

abstract patches instead of concrete patches, and hence, can reason

aboutmultiple patches at once to remove or refine patches. Prophet

and GenProg, however, explore and evaluate all concrete patches,

which causes a significant slowdown. Reduction of the patch vali-

dation time is possible if we can validate patches without the need

to re-compile the program for each concrete patch [8, 9, 49].

RQ4 – Patch Space Exploration: A large/rich search space

requires an efficient exploration strategy, which can be achieved

by, e.g., using search space abstractions.

Patch Ranking. Although Fix2Fit builds a rich search space and can

efficiently explore it, it still cannot produce many correct patches in

our experiments. One reason is that Fix2Fit can identify a correct

patch but fails to pinpoint it in the top-10 patches because it only

applies a rudimentary patch ranking, which uses the edit-distance

between the original and patched program. For instance, Fix2Fit

generates the correct patch for the defect 865f7b2 in the LibTiff

subject but ranks it below position 10, and hence, it is not considered

in our evaluation. Furthermore, Fix2Fit’s patch refinement and

ranking is based on crash-avoidance, which is not suitable for a test-

suite repair benchmark such as ManyBugs that does not include

many crashing defects. CPR improves on that by leveraging the user-

provided logical constraint to reason about additionally generated

inputs, while the patch behaviors on these inputs are collected and

used to rank the patches. But still, overall, it cannot produce many

correct patches within the top-10. We also investigated how many

of the correct patches are within the top-5 because 72% (𝑃 < .001) of
our survey participants favored reviewing only up to 5 patches (see

Figure 4). We observed that most identified correct patches within

the top-10 are ranked very high so that there is not much difference

if a top-5 threshold is applied. Recent works [49, 50] propose the use

of the test behavior similarity between original/patched programs

to rank plausible patches, which is a promising future direction.

RQ4 – Patch Ranking: After exploring the correct patch, an

effective patch ranking is the last impediment for the developer.

6.2 Impact of additional inputs (RQ5)

Providing Fix Location as User input. In Table 4, the column EC1

shows the results with the tool’s fault localization technique, and

column EC2 shows the results by repairing only at the developer-

provided (correct) fix location. Intuitively, one expects that equipped

with the developer fix location, the results of each repair technique

should improve. However, the results by Angelix and GenProg

do not change (except for one more plausible patch with Angelix).

From the previous discussion about the search space, we conclude

that the program transformations by Angelix are the main limiting

factor to the extent that even the provision of the correct fix location

has no impact. For GenProg we know from the EC3 configuration

that there is at least one correct patch in the search space (see

Table 4). Therefore, we conclude that GenProg suffers from its

inefficient space exploration so that even the space reduction by

setting the fix location has no impact. Prophet instead can generate

two additional correct patches in EC2, and hence, benefits from

the precise fix location. The exploration ratio in Table 5 shows that

Prophet almost fully explores its search space in EC2, indicating a

smaller search space. Fix2Fit can generate one more correct patch

as compared to EC1. Similar to Prophet, Fix2Fit benefits from

the precise fix location and can explore more of its search space.

Note that CPR is not included in the comparison between EC1 and

EC2 because it does not apply for EC1. However, for EC2, it can

generate the highest number of correct patches. Besides its efficient

patch space abstraction, we attribute this to its ability to incorporate

additional user inputs like the fix location and the user-provided

logical constraint.

RQ5 – Fix Location: Our results show that the provision of the

precise and correct fix location does not necessarily improve

the outcome of the state-of-the-art APR techniques due to their

limitations in search space construction and exploration. How-

ever, being amenable to such additional inputs can significantly

improve the repair success, as shown by results from CPR.

Varying Passing Test Cases. To examine the impact of the passing

test cases, we consider the differences between the columns EC2,

EC3, and EC4 in Table 4. In general, more passing test cases can lead

to high-quality patches because they represent information about

the correct behavior. In line with this, we observe that more passing

test cases lead to fewer plausible patches because the patch valida-

tion can remove more overfitting patches. For Angelix however,

we observe that there is no difference due to its limited search space.

CPR is also not affected by the varying number of passing test cases.

It uses the failing test cases to synthesize the search space and the

passing test cases as seed inputs for its input generation. But since

CPR always fully explores the search space in our experiments, the

variation of the initial seed inputs has no effect within the 1 hour.

Overall, we observe three different effects: (a) For techniques with

2236

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yannic Noller, Ridwan Shariffdeen, Xiang Gao, and Abhik Roychoudhury

a limited search space (e.g., Angelix), passing test cases have very

low or no effect. (b) For techniques that suffer from inefficient space

exploration strategies (e.g., GenProg and Prophet), having fewer

passing test cases can speed up the repair process and lead to more

plausible (possibly overfitting) patches. (c) Otherwise (e.g., Fix2Fit),

variations in the passing test cases can still influence the ranking.

Whether more tests are better depends on the APR strategy and its

characteristics, as discussed in Section 6.1. Therefore, we suggest

that APR techniques incorporate an intelligent test selection or

filtering mechanism, which is not yet studied extensively in the

context of APR. Recently, [27] suggested applying traditional re-

gression test selection and prioritization to achieve better repair

efficiency. Further developing and using such a mechanism repre-

sents a promising research direction. Note that in the discussed

experiments, the fix location was defined beforehand. However, if

APR techniques use a test-based fault localization technique (like

in EC1), the test cases have an additional effect on the search space

and repair success.

RQ5 – Test Cases: Variation of passing test cases causes dif-

ferent effects depending on the characteristics of the APR tech-

niques. Overall, one needs an intelligent test selection method.

7 THREATS TO VALIDITY

External Validity of Survey. Although we reached out to different

organizations in different countries, we cannot guarantee that our

survey results can be generalized to all software developers. To

mitigate this threat, we made all research artifacts publicly avail-

able [35] so that other researchers and practitioners can replicate

our study. To reduce the risk of developers not participating or

the volunteer bias, we designed the survey for a short completion

time (15-20 min) and provided incentives like charity donations and

(in the case of MTurk) monetary compensation. Another potential

threat to validity is that only 15% of all participants responded that

they are familiar with APR (see Q6.8/9/10). This is to be expected

as APR is not (yet) heavily applied in the industry (with exceptions

like Facebook and Bloomberg). To ensure that the participants have

an idea of APR, we added a description and a link to an illustrative

video at the beginning of our survey form. We note that we are

exploring what it would take for developers to try out program

repair, since developers may have general preconceived notions.

By finding out what would make the developers comfortable to use

APR, we can hope to increase adoption.

Construct Validity of Survey. In our survey, to encourage candid

responses from participants, we did not collect any personally iden-

tifying information. Additionally, we applied control questions to

filter non-genuine answers. To mitigate the risk of wrong interpre-

tation of the collected responses, we performed qualitative analysis

coding, for which all codes have been checked and agreed by at

least two authors. Although we found general agreement across

participants for many questions, we consider our results only as a

first step towards exploring trustworthy APR.

Internal Validity of Survey. Our participants could have misunder-

stood our survey questions, as we could not clarify any particulars

due to the nature of online surveys. To mitigate this threat, we

performed a small pilot survey with five developers, in which we

asked for feedback about the questions, the survey structure, and

the completion time. Additionally, there is a general threat that

participants could submit multiple responses because our survey

was completely anonymous.

Threats to Validity of Experimental Results. In our empirical analysis,

we do not cover all available APR tools, but instead, we cover the

main APR concepts: search-based, semantics-based, and machine-

learning-based techniques. With ManyBugs [20] we have chosen

a benchmark that is a well-known collection of defects in open-

source projects. Additionally, it includes many test cases, which

are necessary to evaluate the aspects of test case provision. The

metrics in our quantitative evaluation measure the patch generation

progress, measuring repair efficiency/effectiveness via variations

in configurations (EC1-EC4). To mitigate the threat of errors in our

setup of experiments, we performed preliminary runs with a subset

of the benchmark and manually investigated the results.

Our experimental results in Section 5 explore the capability of the

repair tools to produce patches within a 1-hour timeout. Different

results may be observed if a different timeout is chosen. More

importantly, it is possible to get significantly better results from the

repair tools by fine-tuning the parameters of the repair tools. For

example, when we modify the synthesis-level parameter of Angelix

(a parameter that modulates the back-end synthesis of the tool, and

hence, can affect the search space), we can see additional patches

being generated, such as for a defect in Libtiff. In our experiments,

we did not fine-tune such parameters but instead used the default

parameter settings, to simulate the experience of novice APR users.

It is entirely possible that more expert APR users will be able to

use the tools more effectively to get better results. The impact of

parameter choices can also be rather nuanced e.g. Angelix is built

on top of KLEE symbolic execution engine and KLEE has parameter

settings of its own. Furthermore, we only share the results for the

1-hour timeout as it is closer to the time tolerance mentioned by

our study participants.

8 RELATEDWORK

Our related work includes considerations of trust issues [2, 5, 38]

and studies about the human aspects in automated program re-

pair [7, 11, 16, 23, 43], user studies about debugging [36], and em-

pirical studies about repair techniques [18, 24, 25, 29, 33, 46, 48, 51].

With regard to human aspects in automated program repair, our

survey study contributes novel insights about the developers’ expec-

tations on their interaction with APR and which mechanisms help

to increase trust. With regard to empirical studies, our evaluation

contributes a fresh perspective on existing APR techniques.

Trust Aspects in APR. Trust issues in automated program repair

emerge from the general trust issues in automation. Lee and See [22]

discuss that users tend to reject automation techniques whenever

they do not trust them. Therefore, for the successful deployment

of automated program repair in practice, it will be essential to

focus on its human aspects. With respect to this, our presented

survey contributes to the knowledge base of how developers want to

interact with repair techniques, and what makes them trustworthy.

2237

Trust Enhancement Issues in Program Repair ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Existing research on trust issues in APR focuses mainly on the

effect of patch provenance, i.e., the source of the patch. Ryan and

Alarcon et al. [2, 38] performed user studies, in which they asked

developers to rate the trustworthiness of patches, while the re-

searchers varied the source of the patches. Their observations indi-

cate that human-written patches receive a higher degree of trust

than machine-generated patches. Bertram et al. [5] conducted an

eye-tracking study to investigate the effect of patch provenance.

They confirm a difference between human-written and machine-

generated patches and observe that the participants prefer human-

written patches in terms of readability and coding style. Our study,

on the other hand, explores the expectations and requirements of

developers for trustworthy APR. The work of Weimer et al. [47]

proposed strategies to assess repaired programs to increase human

trust. Our study results confirm that an efficient patch assessment

is crucial and desired by the developers. We note that [47] focuses

on how to assess APR, while we focus on how to enhance/improve

APR in general, specifically in terms of its trust.

Human Aspects in APR. Other human studies in the APR context fo-

cus on how developers interact with APR’s output, i.e., the patches.

Cambronero et al. [7] observed developers while fixing software

issues. They infer that developers would benefit from patch expla-

nation and summaries to efficiently select suitable patches. They

propose to explain the roles of variables and their relation to the

original code, to list the characteristics of patches, and to sum-

marize the effect of the patches on the program. Tao et al. [43]

explored how machine-generated patches can support the debug-

ging process. They conclude that, compared to debugging know-

ing only the buggy location, high-quality patches can support the

debugging effort, while low-quality patches can actually compro-

mise it. Liang et al. [23] concluded that even incorrect patches are

helpful if they provide additional knowledge like fault locations.

Fry et al. [11] explored the understandability and maintainabil-

ity of machine-generated patches. While their participants label

machine-generated patches as “slightly” less maintainable than

human-written patches, they also observe that some augmentation

of patches with synthesized documentation can reverse this trend.

Kim et al. [16] proposed their template-based repair technique PAR

and evaluated the patch acceptability compared to GenProg. All of

these preliminary works explore the reactions on the output of APR.

While our findings confirm previous hypotheses, e.g., that fault lo-

cations are helpful side-products of APR [23] or that an efficient

patch selection is important [23, 47], our work also considers the

input to APR, the interaction with APR during patch generation,

and how trust can be accomplished.

Debugging. Parnin and Orso [36] investigate the usefulness of de-

bugging techniques in practice. They observe that many assump-

tions made by automated debugging techniques often do not hold

in practice. Johnson et al. [15] explore barriers for the wide adop-

tion of static analysis tools and how well such tools fit into actual

development workflows. They conduct interviews with developers

and discuss their feedback to identify how those techniques can be

improved. Although we focus on automated program repair, our

research theme is related to [36] and [15]. We strive to understand

how developers want to use automated program repair and whether

current techniques support these aspects.

Empirical Evaluation of APR. The living review article on automated

program repair by Martin Monperrus [32] lists (at the point of

time we wrote this paper) 43 empirical studies. Most of them are

concerned about patch correctness to compare the success of APR

techniques. Other frequently explored aspects are repair efficiency

[18, 24, 25, 29], the impact of fault locations [24, 25, 48, 51], and

the diversity of bugs [18, 24, 24]. Less frequently studied aspects

are the impact of the test suite [18, 33] and its provenance [19, 33],

specifically the problem of test-suite overfitting [19, 24], and how

close the generated patches come to human-written patches [46].

Our empirical evaluation is not just another empirical assessment of

APR technologies. It is specifically linked to the collected developer

expectations from our survey. It limits the timeout to 1 hour, only

explores the top-10 patches, and explores various configurations of

passing tests as well as the impact of fix locations. Together with

our survey results, our empirical/quantitative evaluation provides

the building blocks to create trustworthy APR techniques, which

will need to be validated via future user studies with practitioners.

9 DISCUSSION

In this paper, we have investigated the issues involved in enhanc-

ing developer trust in automatically generated patches. Through

a detailed study with more than 100 practitioners, we explore the

expectations and tolerance levels of developers with respect to

automated program repair tools. We then conduct a quantitative

evaluation of existing repair tools to simulate the experience of

novice APR users. Our qualitative and quantitative studies indi-

cate directions that need to be explored to gain developer trust in

patches — low interaction with repair tools, exchange of artifacts

such as generated tests as inputs as well as output of repair tools,

and paying attention to abstract search space representations over

and above search algorithmic frameworks. Each repair tool has

many parameters and we only used the default parameter settings

as would be expected from novice users — we did not explore the

various parameter settings. To understand the full capability of the

repair tools, in future it would be worthwhile to systematically

explore a large number of parameter settings and try out the tools

with various different timeouts.

We note that increasingly there is a move towards automated

code generation such as the recently proposed Github Copilot, but

this raises the question of whether such automatically generated

code can be trusted. Developing technologies to support mixed

usage of manually written and auto-generated code, where program

repair can improve the automatically generated code – could be an

enticing research challenge for the community.

DATASET FROM OURWORK

Our replication package with the survey and experiment artifacts

is available on Zenodo [35].

ACKNOWLEDGMENT

This research is supported by the National Research Foundation,

Prime Minister’s Office, Singapore under its Campus for Research

Excellence and Technological Enterprise (CREATE) programme.

2238

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Yannic Noller, Ridwan Shariffdeen, Xiang Gao, and Abhik Roychoudhury

REFERENCES
[1] 2008. Binomial Test. Springer New York, New York, NY, 47–49. https://doi.org/

10.1007/978-0-387-32833-1_36
[2] Gene M. Alarcon, Charles Walter, Anthony M. Gibson, Rose F. Gamble, August

Capiola, Sarah A. Jessup, and Tyler J. Ryan. 2020. Would You Fix This Code for
Me? Effects of Repair Source and Commenting on Trust in Code Repair. Systems
8, 1 (2020). https://doi.org/10.3390/systems8010008

[3] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:
Learning to fix bugs automatically. Proceedings of the ACM on Programming
Languages 3, OOPSLA (2019), 1–27.

[4] Rohan Bavishi, Hiroaki Yoshida, and Mukul R Prasad. 2019. Phoenix: Automated
data-driven synthesis of repairs for static analysis violations. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. 613–624.

[5] Ian Bertram, Jack Hong, Yu Huang, Westley Weimer, and Zohreh Sharafi. 2020.
Trustworthiness Perceptions in Code Review: An Eye-Tracking Study. In Pro-
ceedings of the 14th ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM) (ESEM ’20). Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3382494.3422164

[6] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (San Diego, California) (OSDI’08). USENIX Association, USA,
209–224.

[7] José Pablo Cambronero, Jiasi Shen, Jürgen Cito, Elena Glassman, and Martin
Rinard. 2019. Characterizing Developer Use of Automatically Generated Patches.
In 2019 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). 181–185. https://doi.org/10.1109/VLHCC.2019.8818884

[8] Lingchao Chen, Yicheng Ouyang, and Lingming Zhang. 2021. Fast and Precise On-
the-Fly Patch Validation for All. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). 1123–1134. https://doi.org/10.1109/ICSE43902.
2021.00104

[9] Thomas Durieux, Benoit Cornu, Lionel Seinturier, and Martin Monperrus. 2017.
Dynamic patch generation for null pointer exceptions using metaprogramming.
In 2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER). 349–358. https://doi.org/10.1109/SANER.2017.7884635

[10] Kami Ehrich. 2020. Mechanical Turk: Potential Concerns and Their Solutions.
https://www.summitllc.us/blog/mechanical-turk-concerns-and-solutions.

[11] Zachary P. Fry, Bryan Landau, and Westley Weimer. 2012. A Human Study of
Patch Maintainability. In Proceedings of the 2012 International Symposium on
Software Testing and Analysis (Minneapolis, MN, USA) (ISSTA 2012). Association
for Computing Machinery, New York, NY, USA, 177–187. https://doi.org/10.
1145/2338965.2336775

[12] Xiang Gao, Sergey Mechtaev, and Abhik Roychoudhury. 2019. Crash-Avoiding
Program Repair. In Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis (Beijing, China) (ISSTA 2019). Association for
Computing Machinery, New York, NY, USA, 8–18. https://doi.org/10.1145/
3293882.3330558

[13] Xiang Gao, Bo Wang, Gregory J. Duck, Ruyi Ji, Yingfei Xiong, and Abhik Roy-
choudhury. 2021. Beyond Tests: Program Vulnerability Repair via Crash Con-
straint Extraction. ACM Trans. Softw. Eng. Methodol. 30, 2, Article 14 (Feb. 2021),
27 pages. https://doi.org/10.1145/3418461

[14] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
Program Repair. Commun. ACM 62, 12 (Nov. 2019), 56–65. https://doi.org/10.
1145/3318162

[15] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs?.
In 2013 35th International Conference on Software Engineering (ICSE). 672–681.
https://doi.org/10.1109/ICSE.2013.6606613

[16] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
Patch Generation Learned from Human-Written Patches. In Proceedings of the
2013 International Conference on Software Engineering (San Francisco, CA, USA)
(ICSE ’13). IEEE Press, 802–811.

[17] S. Kirbas, E. Windels, O. McBello, K. Kells, M. Pagano, R. Szalanski, V. Nowack, E.
Winter, S. Counsell, D. Bowes, T. Hall, S. Haraldsson, and J. Woodward. 2021. On
The Introduction of Automatic Program Repair in Bloomberg. IEEE Software 38,
04 (jul 2021), 43–51. https://doi.org/10.1109/MS.2021.3071086

[18] Xianglong Kong, Lingming Zhang, W Eric Wong, and Bixin Li. 2018. The impacts
of techniques, programs and tests on automated program repair: An empirical
study. Journal of Systems and Software 137 (2018), 480–496. https://doi.org/10.
1016/j.jss.2017.06.039

[19] Xuan Bach D Le, Ferdian Thung, David Lo, and Claire Le Goues. 2018. Overfitting
in semantics-based automated program repair. Empirical Software Engineering
23, 5 (2018), 3007–3033.

[20] Claire Le Goues, Neal Holtschulte, Edward K. Smith, Yuriy Brun, Premkumar
Devanbu, Stephanie Forrest, and Westley Weimer. 2015. The ManyBugs and
IntroClass Benchmarks for Automated Repair of C Programs. IEEE Transactions

on Software Engineering 41, 12 (2015), 1236–1256. https://doi.org/10.1109/TSE.
2015.2454513

[21] Claire Le Goues, Thanh Vu Nguyen, Stephanie Forrest, andWestleyWeimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Transactions
on Software Engineering 38, 1 (2012), 54–72. https://doi.org/10.1109/TSE.2011.104

[22] John D. Lee and Katrina A. See. 2004. Trust in Automation: Designing for
Appropriate Reliance. Human Factors 46, 1 (2004), 50–80. https://doi.org/10.
1518/hfes.46.1.50_30392 arXiv:https://doi.org/10.1518/hfes.46.1.50_30392

[23] Jingjing Liang, Ruyi Ji, Jiajun Jiang, Yiling Lou, Yingfei Xiong, and Gang
Huang. 2020. Interactive Patch Filtering as Debugging Aid. arXiv preprint
arXiv:2004.08746 (2020).

[24] Kui Liu, Li Li, Anil Koyuncu, Dongsun Kim, Zhe Liu, Jacques Klein, and
Tegawendé F Bissyandé. 2021. A critical review on the evaluation of automated
program repair systems. Journal of Systems and Software 171 (2021), 110817.
https://doi.org/10.1016/j.jss.2020.110817

[25] Kui Liu, Shangwen Wang, Anil Koyuncu, Kisub Kim, Tegawendé F. Bissyandé,
Dongsun Kim, Peng Wu, Jacques Klein, Xiaoguang Mao, and Yves Le Traon. 2020.
On the Efficiency of Test Suite Based Program Repair: A Systematic Assessment of
16 Automated Repair Systems for Java Programs. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering (Seoul, South Korea) (ICSE
’20). Association for Computing Machinery, New York, NY, USA, 615–627. https:
//doi.org/10.1145/3377811.3380338

[26] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learn-
ing Correct Code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (St. Petersburg, FL, USA)
(POPL ’16). Association for Computing Machinery, New York, NY, USA, 298–312.
https://doi.org/10.1145/2837614.2837617

[27] Yiling Lou, Samuel Benton, Dan Hao, Lu Zhang, and Lingming Zhang. 2021. How
Does Regression Test Selection Affect Program Repair? An Extensive Study on 2
Million Patches. arXiv preprint arXiv:2105.07311 (2021).

[28] Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia,
Ke Mao, Alexander Mols, and Andrew Scott. 2019. SapFix: Automated End-to-
End Repair at Scale. In 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). 269–278. https://doi.
org/10.1109/ICSE-SEIP.2019.00039

[29] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin
Monperrus. 2017. Automatic repair of real bugs in java: a large-scale experiment
on the defects4j dataset. Empirical Software Engineering 22, 4 (2017), 1936–1964.
https://doi.org/10.1007/s10664-016-9470-4

[30] Sergey Mechtaev, Xiang Gao, Shin Hwei Tan, and Abhik Roychoudhury. 2018.
Test-Equivalence Analysis for Automatic Patch Generation. ACM Trans. Softw.
Eng. Methodol. 27, 4, Article 15 (Oct. 2018), 37 pages. https://doi.org/10.1145/
3241980

[31] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis. In Proceedings of the
38th International Conference on Software Engineering (Austin, Texas) (ICSE ’16).
Association for Computing Machinery, New York, NY, USA, 691–701. https:
//doi.org/10.1145/2884781.2884807

[32] Martin Monperrus. 2018. The Living Review on Automated Program Repair. Tech-
nical Report hal-01956501. HAL/archives-ouvertes.fr.

[33] Manish Motwani, Mauricio Soto, Yuriy Brun, Rene Just, and Claire Le Goues. 2020.
Quality of Automated Program Repair on Real-World Defects. IEEE Transactions
on Software Engineering (2020), 1. https://doi.org/10.1109/TSE.2020.2998785

[34] H.D.T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. 2013. SemFix: Program
Repair via Semantic Analysis. In International Conference on Software Engineering.

[35] Yannic Noller, Ridwan Shariffdeen, Xiang Gao, and Abhik Roychoudhury. 2022.
Replication Package for "Trust Enhancement Issues in Program Repair". https:
//doi.org/10.5281/zenodo.5908381

[36] Chris Parnin and Alessandro Orso. 2011. Are Automated Debugging Tech-
niques Actually Helping Programmers?. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis (Toronto, Ontario, Canada) (IS-
STA ’11). Association for Computing Machinery, New York, NY, USA, 199–209.
https://doi.org/10.1145/2001420.2001445

[37] Karl Pearson. 1900. X. On the criterion that a given system of deviations from
the probable in the case of a correlated system of variables is such that it can
be reasonably supposed to have arisen from random sampling. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science 50, 302 (July
1900), 157–175. https://doi.org/10.1080/14786440009463897

[38] Tyler J. Ryan, Gene M. Alarcon, Charles Walter, Rose Gamble, Sarah A. Jessup,
August Capiola, and Marc D. Pfahler. 2019. Trust in Automated Software Re-
pair. In HCI for Cybersecurity, Privacy and Trust, Abbas Moallem (Ed.). Springer
International Publishing, Cham, 452–470.

[39] Margrit Schreier. 2012. Qualitative content analysis in practice. Sage publications.
[40] Ridwan Shariffdeen, Yannic Noller, Lars Grunske, and Abhik Roychoudhury.

2021. Concolic Program Repair. In Proceedings of the 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementation (Virtual,
Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA,
390–405. https://doi.org/10.1145/3453483.3454051

2239

Trust Enhancement Issues in Program Repair ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

[41] Ridwan Salihin Shariffdeen, Shin Hwei Tan, Mingyuan Gao, and Abhik Roy-
choudhury. 2021. Automated Patch Transplantation. ACM Trans. Softw. Eng.
Methodol. 30, 1, Article 6 (Dec. 2021), 36 pages. https://doi.org/10.1145/3412376

[42] Shin Hwei Tan, Hiroaki Yoshida, Mukul R Prasad, and Abhik Roychoudhury. 2016.
Anti-patterns in search-based program repair. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
727–738.

[43] Yida Tao, Jindae Kim, Sunghun Kim, and Chang Xu. 2014. Automatically Gener-
ated Patches as Debugging Aids: A Human Study. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering (Hong
Kong, China) (FSE 2014). Association for Computing Machinery, New York, NY,
USA, 64–74. https://doi.org/10.1145/2635868.2635873

[44] Simon Urli, Zhongxing Yu, Lionel Seinturier, and Martin Monperrus. 2018. How
to Design a Program Repair Bot? Insights from the Repairnator Project. In 2018
IEEE/ACM 40th International Conference on Software Engineering: Software Engi-
neering in Practice Track (ICSE-SEIP). 95–104.

[45] Rijnard van Tonder and Claire Le Goues. 2018. Static automated program repair
for heap properties. In Proceedings of the 40th International Conference on Software
Engineering. 151–162.

[46] ShangwenWang, MingWen, Liqian Chen, Xin Yi, and XiaoguangMao. 2019. How
Different Is It Between Machine-Generated and Developer-Provided Patches? :
An Empirical Study on the Correct Patches Generated by Automated Program
Repair Techniques. In 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). 1–12. https://doi.org/10.1109/
ESEM.2019.8870172

[47] Westley Weimer, Stephanie Forrest, Miryung Kim, Claire Le Goues, and Patrick
Hurley. 2016. Trusted Software Repair for System Resiliency. In 2016 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks Workshop
(DSN-W). 238–241. https://doi.org/10.1109/DSN-W.2016.64

[48] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2017.
An empirical analysis of the influence of fault space on search-based automated
program repair. arXiv preprint arXiv:1707.05172 (2017).

[49] Chu-Pan Wong, Priscila Santiesteban, Christian Kästner, and Claire Le Goues.
2021. VarFix: Balancing Edit Expressiveness and Search Effectiveness in Auto-
mated Program Repair. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (Athens, Greece) (ESEC/FSE 2021). Association for Computing Ma-
chinery, New York, NY, USA, 354–366. https://doi.org/10.1145/3468264.3468600

[50] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. 2018.
Identifying Patch Correctness in Test-Based Program Repair. In Proceedings of
the 40th International Conference on Software Engineering (Gothenburg, Sweden)
(ICSE ’18). Association for Computing Machinery, New York, NY, USA, 789–799.
https://doi.org/10.1145/3180155.3180182

[51] Deheng Yang, Yuhua Qi, Xiaoguang Mao, and Yan Lei. 2020. Evaluating the usage
of fault localization in automated program repair: an empirical study. Frontiers of
Computer Science 15, 1 (2020), 151202. https://doi.org/10.1007/s11704-020-9263-1

[52] J Yang, A Zhikhartsev, Y Liu, and L Tan. 2017. Better test cases for better auto-
mated program repair. In Joint Meeting on Foundations of Software Engineering
(ESEC-FSE).

2240

