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Abstract—Automated Program Repair (APR) represents a
suite of emerging technologies which attempt to automatically fix
bugs and vulnerabilities in programs. APR is a rapidly growing
field with new tools and benchmarks being added frequently.
Yet a language agnostic repair framework is not available. We
introduce CERBERUS, a program repair framework integrated
with 20 program repair tools and 9 repair benchmarks, coexisting
in the same framework. CERBERUS is capable of executing
diverse set of program repair tasks, using multitude of program
repair tools and benchmarks.

Video: https://www.youtube.com/watch?v=bYtShpsGL68
Index Terms—automated program repair, repair platform

I. INTRODUCTION

Automated Program Repair (APR) [1] has many applica-
tions in software engineering, like supporting software de-
velopers in fixing bugs, particularly for security vulnerabili-
ties and concurrency bugs, but also for guiding students to
solve programming assignments in an educational context.
Furthermore, APR has already been adopted to some initial
extent in industry deployments [2], [3], in which they are
usually added to the CI/CD pipelines, proposing patches for
failing test cases. While we can observe a plethora of APR
approaches [4], they greatly vary in required patch ingredients,
target languages, and execution environments, including the
dependencies and instrumentation requirements. This large
diversity poses a challenge for bug and patch reproduction
and technique comparisons.

The existing approaches for integrating APR tools into
frameworks [5]–[7] fail to provide an environment and archi-
tecture that would allow covering multiple application domains
and target languages. REPAIRTHEMALL [5] assumes that APR
tools are provided as .jar-files and is customized for Java
repair. SECURETHEMALL [6] is customized for security vul-
nerability repair and targets C/C++ programs. The most recent
proposed work is MAESTRO [7], a benchmarking framework
for automated program repair tools that supports multiple
implementation and target languages. However, their design
choices prevent the integration of semantic-based techniques
like CPR [8] that require complex build infrastructures.

To close this gap, we present CERBERUS, a program repair
framework that provides the means to integrate many differ-
ent APR tools with diverse target languages and application
domains, their execution environments, and their experiment
data sets, resulting in a unified way of accessing the developed
tools. In contrast to the existing works, CERBERUS does
not make any assumption about implementation or target
language, and is not customized to a specific application

domain. In contrast to MAESTRO, it encapsulates the bench-
mark and the repair tool in a single container setup, which
makes it straightforward to integrate tools with complex build
infrastructure. In fact, we have already integrated 20 tools for
C/C++ and Java with various repair methodologies covering
search-based, semantic-based, and learning-based APR and
multiple application domains, including test-based general-
purpose repair, security repair, static-based concurrency repair,
and student assignment repair.

CERBERUS is useful for software engineering researchers as
well as for software developers. Researchers can integrate their
new APR tool into our framework and perform evaluations
with the already integrated tools. Thereby, they do not need
to consider dependency issues or the technical setups of
other tools because our framework makes them readily avail-
able. Moreover, we have already integrated the corresponding
benchmarks and data sets, which makes it straightforward to
run additional experiments. Software developers, who may
not be familiar with APR and the existing tools, can use
CERBERUS to apply different APR tools on their own (private)
data set to see which technique is most suited for their needs.
CERBERUS makes the existing APR tools accessible beyond
their original experimental environment (i.e., as reported in the
corresponding research papers), enables the reproducibility of
APR studies, allows comparisons between tools, and enables
practitioners to get easy access to the state of the art in APR.

To demonstrate the capabilities of CERBERUS in handling
a diverse set of APR approaches, we used it to reproduce
the experiments of VERIFIX [9], SEQUENCER [10], and
RECORDER [11]. Both SEQUENCER and RECORDER are
learning-based APR approaches, which require a specific
environment (i.e., CUDA-compliant GPU) in order to work,
and VERIFIX applies repair in the educational context, which
makes it different from the standard general-purpose repair
application. Our results show that CERBERUS can produce
similar or the same results as the original works. We observed
minor differences in the results for VERIFIX because we used
the latest tool version, which the authors had improved since
the original publication. We make the following contributions:

• CERBERUS, a fully agnostic repair platform with a lay-
ered architecture that allows the addition of new tools and
benchmarks, including complex build infrastructures,

• the integration of 20 program repair tools and 9 repair
benchmarks across multiple target languages and appli-
cation domains, and

• the demonstration of CERBERUS’s capabilities on execut-
ing repair in the educational context with VERIFIX and

https://www.youtube.com/watch?v=bYtShpsGL68


in general-purpose repair with the learning-based APR
techniques SEQUENCER and RECORDER.

II. DESIGN AND USAGE

In this section, we describe the design architecture and
the components of our platform. The default mode of ex-
ecution in CERBERUS is using containers, which allows to
create isolated, modular, and easily reproducible experiments
for empirical studies. However, CERBERUS is designed to
cater repair tools in both containerized and non-containerized
environments. This is because not all program repair tools
are available as a Docker container, but also can be made
available as a virtual machine (e.g., SENX [12]). The platform
is built with the aim of providing flexibility in executing
repair tools with less assumptions about the environment and
the dependencies required. For brevity, the rest of the paper
discusses the containerized mode of CERBERUS. Instructions
for specifying the virtualization can be found in our repository.

Experiments in program repair require two main compo-
nents to be configured and set up. One component is the APR
tool itself, with all dependencies available during runtime.
The second component is the benchmark which provides
information on the bug that needs to be repaired and the
mechanism to reproduce the bug in a new environment.
CERBERUS abstracts the nuances of different experiments and
alleviates the repetitive, tedious efforts required to set up an
experiment by providing a single interface to the user.

Fig. 1. Repair workflow of CERBERUS

Figure 1 illustrates the workflow for CERBERUS. The user
selects a repair tool and a repair benchmark from a pre-
configured list. Additionally, we provide experiment profiles
that can be configured to control the experiment for different
parameters (i.e., time duration for repair, number of test cases
provided, etc.). Once the user makes the selection, CERBERUS
will extract the relevant meta-data of the bug(s) that needs
to be repaired. First, it will load the Docker image for the
repair tool as the baseline image and extend the container by
setting up the benchmark. Once the container is instantiated,

CERBERUS will load the experiment profile to adjust the
necessary parameters and invoke the repair module inside the
container. Finally, CERBERUS extracts necessary artifacts, e.g.,
generated patches, debug logs, and other artifacts like repair
constraints and additional generated test cases.

Fig. 2. Layered architecture for containers in CERBERUS

Figure 2 depicts the layered architecture CERBERUS follows
to create containers for each experiment. As indicated previ-
ously, the baseline image is the repair tool that encapsulates
all necessary dependencies to run the repair tool. CERBERUS
would then extend the container by setting up the benchmark
subject. For each experiment, a container will be spawned
and can be used for a controlled experiment. This layered
architecture provides several advantages, such as efficient
space management, low latency for repeated experiments, and
the re-usability of shared layers. Docker uses a union file
system that uses a copy-on-write strategy to provide efficient
space management. This means only the files modified by the
write-layer (the top-most layer) are changed in the container.
This strategy allows sharing of common files across differ-
ent containers. Additionally, since Docker provides in-built
caching of the layers, the consecutive re-run of experiments
can be executed without rebuilding the complete container.
For instance, consider a subject in the MANYBUGS benchmark
(e.g., PHP-Bug-X) that we will run for one hour on PROPHET.
Re-running the same experiment with a 2-hour timeout would
be easily instantiated with the minor change to the repair
profile, saving time and space for the new experiment.

A. Extendibility

CERBERUS provides necessary abstractions for tool devel-
opers and benchmark providers to easily integrate and extend
the platform. To integrate a new repair tool, the tool developer
needs to create a new driver for the tool. To invoke the repair
process, the driver should provide the basic functionalities
for CERBERUS. In particular, the driver should transform the
meta-data provided by a benchmark into the expected form by
the repair tool (i.e., creating configuration files). Once a repair
driver is configured, CERBERUS can create the experiment
container and execute the experiment with the configuration
parameters defined in the repair profile and the information
provided by the selected benchmark.

Integrating a new benchmark requires a separate driver
and a schema file specifying the necessary meta-data for
the defects in the benchmark. Different benchmarks provide
different sets of information based on the complexity of
the defects and the artifacts required for repair (i.e., test



TABLE I
DETAILS OF THE PROGRAM REPAIR TOOLS INTEGRATED WITH CERBERUS

# Tool Language Methodology Target Defect Type
1 Angelix C/C++ Semantic Test Failure
2 Prophet C/C++ Learning Test Failure
3 Darjeeling C/C++ Search Test Failure
4 CPR C/C++ Semantic Test Failure
5 VulnFix C/C++ Semantic Security Vulnerabilities
6 F1X C/C++ Search Test Failure
7 Fix2Fit C/C++ Search Test Failure
8 SenX C/C++ Search Security Vulnerabilities
9 GenProg C/C++ Search Test Failure
10 ExtractFix C/C++ Semantic Security Vulnerabilities
11 Verifix C Search Student Assignments
12 Hippodrome Java Search Concurrency Bugs
13 SequenceR Java Learning Test Failure
14 ARJA Java Search Test Failure
15 Cardumen Java Search Test Failure
16 jMutRepair Java Search Test Failure
17 jKali Java Search Test Failure
18 jGenProg Java Search Test Failure
19 Nopol Java Semantic Test Failure
20 Recorder Java Learning Test Failure

cases). For instance, VULNLOC only provides one failing test
case since the benchmark is for vulnerability repair, while
MANYBUGS includes a list of passing and failing test cases
for each bug. The driver should provide the functionality to
(configure/build/test/validate) the defects in the benchmark,
capturing different stages in the repair process.

We provide extensive material with documentation, tutori-
als, and examples in our repository1 to support the integration
of new repair tools and new defect benchmarks.

III. IMPLEMENTATION

We have implemented CERBERUS with 20 program re-
pair tools and 9 repair benchmarks consisting of real-world
applications and student assignments. The repair tools rep-
resent different repair methodologies, including learning-
based, semantic-based, and search-based techniques. In or-
der to support containerized learning-based repair tools like
RECORDER [11], we added support for the Nvidia Docker
runtime [13], which can be activated through a command line
argument. Table I details the program repair tools integrated
with CERBERUS representing each methodology.

The benchmark programs consist of different classes of re-
pair tasks, including but not limited to fixing concurrent bugs,
generating feedback for student assignments, and repairing
test suite failures. Table II describes the details of the bench-
mark programs integrated with CERBERUS. MANYBUGS [14],
QUIXBUGS [15], BEARS [16], INTROCLASSJAVA [17] and
DEFECTS4J [18] are benchmarks consisting of functionality
errors reported as test case failures for C/C++ and Java
programs. EXTRACTFIX [19] and VULNLOC [20] are bench-
marks for C/C++ programs capturing a security vulnerability
with a proof of concept exploit. ITSP [21] is a benchmark
consisting of incorrect solutions for student assignments with
a correct solution provided as a reference. HIPPODROME [22]
is a benchmark for concurrency bugs, which does not include
any test case.

1https://github.com/nus-apr/cerberus/blob/main/doc/Extending.md

TABLE II
DETAILS OF THE BENCHMARK SUBJECTS INTEGRATED WITH CERBERUS

# Benchmark Language Type # Projects # Bugs
1 ManyBugs C/C++ Test Failure 6 60
2 VulnLoc C/C++ Vulnerabilities 11 43
3 ExtractFix C/C++ Vulnerabilities 7 30
4 ITSP C Student Assignments 10 661
5 Hippodrome Java Concurrency Bugs 16 25
6 Defects4J Java Test Failure 17 835
7 QuixBugs Java Test Failure 40 40
8 Bears Java Test Failure 72 251
9 IntroClassJava Java Test Failure 6 297

Total 2242

IV. EVALUATION

We demonstrate the capabilities of CERBERUS by analyzing
the performance improvement introduced for repair tasks and
reproducing reported experimented values on literature. First,
we analyze the performance improvement gained by using
CERBERUS with respect to space and time to set up. For this
purpose, we selected the VULNLOC benchmark [20], which
consists of real-world applications with a single failing test.
Table III shows the comparison of running F1X [23] and
VULNFIX [24] on Binutils in the VULNLOC benchmark.
Columns s and t indicate the space consumed by preparing the
subject for repair and the time duration for setup, respectively.

TABLE III
ANALYSIS ON TIME AND SPACE IMPROVEMENT

Bug-ID
Original Cerberus

F1X VULNFIX F1X VULNFIX
s t s t s t s t

CVE-2017-14745 849MB 23s 1.4GB 46s 849MB 27s 597MB 21s
CVE-2017-15020 840MB 30s 1.1GB 37s 840MB 23s 252MB 17s
CVE-2017-15025 851MB 27s 1.1GB 37s 851MB 24s 252MB 17s
CVE-2017-6965 840MB 29s 1.4GB 44s 840MB 24s 582MB 21s

Although both F1X and VULNFIX are repairing the same
subjects, they both require different methods for preparing the
subjects as observed in the space difference in Table III. This is
because F1X does not require the binary files to be built; how-
ever, VULNFIX expects the binary executable to be provided as
input to the repair. In a traditional environment where the user
runs both VULNFIX and F1X in parallel, they would need to
keep two copies of the setup, one for each tool. However, using
the layered architecture in CERBERUS, we only need one copy
of the source code, which saves significant space, as shown
in Table III. For example, CVE-2017-14745 setup would
require 849MB amount of space, on top of which F1X will
run the repair. VULNFIX for the same defect would require an
additional 597MB space totaling to 1.4GB, before attempting
to repair. In the native setup, the two experiments using F1X
and VULNFIX would require 2.3GB. For CERBERUS, the
total space required is 1.4GB saving 597MB for the two
experiments. Similarly, using caching to re-use the previous
setup CERBERUS saves time for consecutive repair on the same
defect. Note that the space and time saving reported are for
two consecutive repairs. For each additional repair, the savings
would be a factorial of the initial saving.

https://github.com/nus-apr/cerberus/blob/main/doc/Extending.md


Next, we successfully reproduce experimental results for
two selected repair tasks. To demonstrate the diversity of repair
tools CERBERUS can cater, we select two repair tasks. In
contrast to traditional test failure repair, we select fixing stu-
dent assignments. For this purpose, we executed the education
repair tool VERIFIX [9] using CERBERUS and were able to
generate similar results as reported in [9]. Table IV shows the
results for the latest version of the tool VERIFIX. The repair
percentages observed in our experiments are slightly better
since we are using the latest version of the tool, which the
authors have improved since the publication.

TABLE IV
EXPERIMENTAL RESULTS FOR VERIFIX IN ITSP BENCHMARK

Lab-ID # Assignments # Programs Repair % Average Time (s)
Lab-3 4 63 91.66 9.95
Lab-4 8 117 82.24 15.80
Lab-5 8 82 71.95 3.03
Lab-6 8 79 49.36 6.72

We also demonstrate that CERBERUS can support learning-
based repair tools. Especially since learning-based repair tools
require different infrastructures to run the repair task - for
example, having a dedicated GPU capable of running machine
learning frameworks that utilize the CUDA API. For this
purpose, we selected SEQUENCER and RECORDER, popu-
lar learning-based tools, and reproduced the results reported
in [10] and some of the experiments in [11]. Table V shows
the results of SEQUENCER and RECORDER on a subset of
DEFECTS4J benchmark. We are able to reproduce identical
results in terms of candidate patches, compilable patches, plau-
sible patches, and correct patches as reported in [10]. For [11],
we examined less experiments and observed deviations from
the reported numbers.

TABLE V
EXPERIMENTAL RESULTS FOR LEARNING-BASED TOOLS IN DEFECTS4J

BENCHMARK

Tool Metric Observed Reported

SEQUENCER

# Bugs candidate patches generated 57 57
# Bugs compilable patches generated 52 52
# Bugs plausible patches generated 19 19
# Bugs correct patches generated 14 14

RECORDER

# Bugs candidate patches generated 25 25
# Bugs compilable patches generated 25 25
# Bugs plausible patches generated 19 25
# Bugs correct patches generated 14 25

V. RELATED WORK

Several works have been proposed in the literature to
address the gap of a standard platform for empirical evaluation
in automated program repair. MAESTRO [7] is a recently
proposed platform to evaluate automated program repair tools
across different benchmarks with a low overhead to the user.
The platform is designed to work as micro-service containers
communicating via RESTful APIs to perform repair tasks for
different benchmark programs. The proposed decentralized
approach creates separate micro-service containers, each for
the benchmark program and for the program repair tool itself.

In contrast, CERBERUS creates a single container encap-
sulating the benchmark program and the repair tool. This
design choice allows CERBERUS to generate on-the-fly Docker
containers customized for a repair tool and a benchmark
program pair. However, a decentralized approach as proposed
in MAESTRO [7] is difficult to extend with repair tools that
require a large dependent toolchain. For example, semantic-
based repair tools such as CPR [8] require LLVM build
infrastructure with KLEE [25] runtime support. Therefore,
separating the benchmark program and the repair tool prevents
running repair using semantic-based repair tools.

Similar to our approach, REPAIRTHEMALL [5] proposed
a framework to evaluate multiple program repair tools across
multiple sets of benchmarks. REPAIRTHEMALL implements
a monolithic architecture targeted for Java. SECURETHE-
MALL [6] follows a similar design but focuses on secu-
rity vulnerabilities. SECURETHEMALL is implemented for
C programs and specifically designed to cater only security
vulnerabilities. In contrast, CERBERUS is not restricted to a
specific language or a class of defects. We have shown that
CERBERUS is capable of catering to multiple programming
languages, multiple classes of defects, and multiple types of
repair techniques (i.e., learning-based, semantic-based, and
search-based).

VI. CONCLUSION

We presented a platform that is capable of executing a
diverse set of program repair tasks using a multitude of
program repair tools and benchmarks. We implemented our
solution in CERBERUS and demonstrated the capability to
reproduce previously reported results in the literature. Our
experiments also showed there is a significant cost saving
in terms of setup time. Our vision is that CERBERUS will
be extended to be used as a repair service constituting a
variety of repair capabilities. As future work CERBERUS will
be integrated with testing and analysis tools such as fuzzers,
static analyzers, and symbolic execution engines. This will
combine bug detection and repair in a single framework.

CERBERUS is open-source and available for use via:
https://github.com/nus-apr/cerberus
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