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Abstract—Automated program repair (APR) allows for au-
tonomous software protection and improvement. Many proposed
repair techniques rely on available test suites, since tests are
available in real-world settings. Tests are incomplete specifica-
tions, however. As a result, repairs generated based on tests may
suffer from the test overfitting problem. The patches produced by
APR techniques may pass the given tests and thus be plausible,
and yet be an incorrect patch. This hints towards more extensive
test suites to guide program repair. Generating additional tests
to improve the test suite quality is generally difficult because the
oracle or expected observable behavior of the generated tests is
unknown. In our work, we first construct additional oracles by
instrumenting buggy programs from the DEFECTS4J benchmark
with the knowledge obtained from the available bug reports.
Then, we formulate a coevolution approach that generates tests
and repairs in a unified workflow. The complete workflow is
implemented as an extension of the well-known Java testing
framework EVOSUITE. This includes re-purposing the search in
EVOSUITE to search for repairs (instead of searching for tests)
and enables an easy adoption for developers who are already
familiar with EVOSUITE for test suite generation. The evaluation
of our tool EVOREPAIR shows that coevolution positively impacts
the quality of patches and tests. In the future, we hope that such
coevolution can inspire new repair tools and techniques.

Index Terms—evolutionary testing, coevolution, automated
program repair

I. INTRODUCTION

Automated program repair (APR) [1] is a technology that
aids developers in generating high-quality patches for software
bugs. Various APR approaches have been proposed, such
as search-based, semantic-based, and learning-based ones,
amongst others. Since test cases represent a readily available
specification of programs, most APR techniques use test cases
as their main correctness criteria.

Although test cases are usually available in a software
project, tests capture an incomplete specification of the pro-
gram. Therefore, relying on tests can lead to the known issues
of over-fitting to test data [2]. This leads to patches that are
plausible because they pass the available test suite but still
incorrect because they do not fix the bug in question. A
straightforward intuition would be adding more test cases to

*This work was done at the National University of Singapore.

improve the specification, but generating more test cases is
non-trivial due to the test oracle problem (i.e., knowing the
expected output for the generated tests). For example, while
software fuzzing can generate many test inputs, it is restricted
to fairly simple, pre-defined oracles like crash freedom or
differential metrics like those used for regression testing. It
is hard to formulate complex functional specifications without
domain knowledge, and formal specifications are usually not
available in practice.

We address the test oracle problem by referring to other
sources of specifications: in practice, we often have developer-
written bug reports [3], [4]. We can extract lightweight spec-
ifications from these bug reports and make them available as
assertions by instrumenting the buggy program. In this work,
we study how additional tests can improve patch generation
and how test generation and patch generation can aid each
other. Thereby, we formulate a coevolutionary generation of
tests and patches to tackle the test overfitting problem and
improve the quality of generated patches. Each coevolution
cycle includes the generation of patches and tests while both
generation processes guide each other. This leads to the
incremental augmentation of the test suite with more tests and
refines the patch space with high quality patches.

We note that Arcuri and Yao [5] explored coevolutionary
program repair based on genetic programming. However, their
strategy is based on the assumption that a formal specification
of the intended program behavior (i.e., a formalization of the
software requirements) is available. As it is widely known,
formal specifications capturing software requirements are often
unavailable in real-life software projects.

Our patch generation employs a coevolutionary search for
patches and tests, initially driven by the developer-provided
test suite. The resulting plausible patches are used as targets
for the test generation so that the new tests should reach the
corresponding fix locations and establish the incorrectness of
these patches. Using the test execution results, we select seed
patches for the next cycle of patch generation. Note that the
fitness score of a patch can change over time, as new tests
are generated. We do not discard patch candidates from the
process as long as they pass the initial test suite. Our approach
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Fig. 1: Overview of EVOREPAIR’s workflow.

however only reports patches that pass all available tests -
including the newly generated tests.

We implement our proposed technique, EVOREPAIR, on top
of the popular Java unit testing framework EVOSUITE [6].
EVOSUITE provides an extensible implementation of variety
of evolutionary testing algorithms which we re-purpose for
program repair. EVOSUITE also supports mutation testing to
assess different properties for test-suites, where the mutants
can be re-purposed as patch candidates for program repair.
We evaluate our proposed technique EVOREPAIR using 39
subjects derived from DEFECTS4J [7]. We compare EVORE-
PAIR with several state-of-the-art tools including ARJA-e [8],
TBAR [9], and REWARDREPAIR [10]. Our evaluation demon-
strates that a coevolutionary process allows us to fix a larger set
of bugs. The test cases generated by EVOREPAIR can prune
the patch pool of EVOREPAIR by 69%, and also prune the
patch pool of other tools by at least 33.3% in our experiments.
Overall, we make the following core contributions:

• We propose a coevolutionary program repair approach
integrated into the popular unit testing framework EVO-
SUITE. We re-purpose EVOSUITE’s evolutionary testing
search, to generate patches. Specifically, we re-purpose
the evolutionary search for patch generation. The tests
also serve as evidence of the trustworthiness of the
patches reported.

• Using DEFECTS4J subjects, for which ARJA [11] can
generate plausible patches, we extracted 39 test oracles
from the corresponding bug reports. These will be also
useful for other researchers in testing and repair.

• We evaluate EVOREPAIR against evolutionary search
based program repair tools. Experimental results demon-
strate the increased efficacy of EVOREPAIR in reducing
over-fitting patches from a pool of patch candidates.

II. OVERVIEW

Figure 1 shows the overall workflow of our coevolutionary
generation of patches and tests. It takes in a buggy program
and a developer provided test-suite. The developer provided
test-suite contains at least one failing test. It outputs a set

of candidate patches as well as a set of tests which provide
evidence of veracity of the patches.

A. Workflow

In our workflow, the initial pool of patches is generated
via mutations. Test generation with the goal of ”killing” these
patches is conducted. Thus, during the course of the repair
algorithm - the test pool increases while the patch pool shrinks.
Coevolutionary algorithms typically maintain a collection of
individuals referred to as an archive or hall of fame, which
is a collection of fittest individuals selected from multiple
generations of coevolution [12]. Throughout the workflow, we
maintain three of such archives:
Hpatches the Hall of Fame for patches including all the

patches that pass the currently considered tests.
Htests the Hall of Fame for tests including the additionally

generated test cases that were able to kill patches.
Vpatches the patch seeds, i.e., the generated patches that pass

the failing developer tests but fail on at least one other
test (either initially passing developer tests or additionally
generated tests). These patches are helpful because they
fix the initial problem but fall short in other aspects. They
serve as additional seeds for patch generation.

The central aspect of coevolutionary repair is the interaction
between testing and repair, which is driven by the decision
to evolve the test or patch domain (Step 1). In the beginning,
since we assume there is a developer test suite, the coevolution
starts from the patch domain and attempts to find plausible
patches. Later, the workflow dynamically decides which do-
main to evolve. As long as the size of Hpatches is below
a pre-defined threshold, we will keep generating patches. If
Hpatches has reached this target size, we will keep generating
tests to kill the patches in Hpatches . For practical usability, the
size of Hpatches should be small [13], so that a developer can
examine the patches in Hpatches . On the other hand, Hpatches

should have enough patches to provide accurate feedback for
test generation. In our experiment, we set the target size to 20.

The patch generation (Steps 2 and 3) starts by constructing
the seed patch pool by combining the two sets Vpatches



Topic:
denominatorDegreeOfFreedom in FDistribution leads
to IllegalArgumentsException in
UnivariateRealSolverUtils.bracket

Description:
The problem is the ’initial’ parameter to that
function, wich is POSITIVE_INFINITY and therefore not
within the boundaries. I already pinned down
the problem to the FDistributions
getInitialDomain()-method, wich goes like:

return getDenominatorDegreesOfFreedom() /
(getDenominatorDegreesOfFreedom() - 2.0);

Obviously, in case of denominatorDegreesOfFreedom
is 2, this must lead to a division-by-zero, resulting
in POSTIVE_INFINITY.

(a) bug report for MATH-227

1 double getInitialDomain(double p, double d) {
2 double ret;
3 ret = d / (d - 2.0);
4 return ret;
5 }

(b) buggy code in MATH-227

1 T wrapper_method(Parameters p ...) {
2 if (instrumentation_enabled) {
3 T result = original_method(p);
4 if (<condition_for_buggy_behavior>) {
5 throw new RuntimeException("[

Defects4J_BugReport_Violation]");
6 }
7 return result;
8 } else {
9 return original_method(p);

10 }
11 }

(c) general oracle instrumentation template

1 double getInitialDomain(double p, double d) {
2 if (Boolean.parseBoolean(System.getProperty("

defects4j.instrumentation.enabled"))) {
3 double init = getInitialDomain_original(p, d);
4 double lowerBound = 0;
5 double upperBound = Double.MAX_VALUE;
6 if (init < lowerBound || init > upperBound) {
7 throw new RuntimeException("[

Defects4J_BugReport_Violation]");
8 }
9 return init;

10 } else {
11 return getInitialDomain_original(p, d);
12 }
13 }

(d) instrumentation for MATH-227

Fig. 2: Illustration of the oracle generation from a developer
provided bug-report and the buggy function, based on MATH-
227 in Defects4J benchmark.

and Hpatches . In the beginning, it is randomly initialized.
Intuitively, we aim to refine the patches in Vpatches by using
the patches from Hpatches . During the evolutionary search,
patches that pass the failing developer tests but fail any other
test will be kept in Vpatches as they can serve as helpful patch

1 double getInitialDomain
2 (double p, double d) {
3 double ret = 0.0;
4 if (p > 0.5)
5 ret = d /(d - 2.0);
6 return ret;
7 }

(a) Patch p1

1 double getInitialDomain
2 (double p, double d) {
3 double ret;
4 ret = d /(d - 1.0);
5 return ret;
6
7 }

(b) Patch p2

1 double getInitialDomain
2 (double p, double d) {
3 double ret = 1.0;
4 if (d != 2.0)
5 ret = d /(d - 2.0);
6 return ret;
7 }

(c) Patch p3

1 double getInitialDomain
2 (double p, double d) {
3 double ret = 1.0;
4 if (d > 2.0)
5 ret = d /(d - 2.0);
6 return ret;
7 }

(d) Patch p4

Fig. 3: Evolution of patches captured in p1, p2, p3 and p4,
generated through multiple iterations of coevolution.

ingredients for future generations, while plausible patches will
be kept in Hpatches . Patch generation ends when Hpatches

reaches a predefined upper-limit size, or when timeout occurs.
The test generation and patch assessment (Steps 4 and 5)

aim at killing overfitting patches. It generates new test cases
guided by the current patches in Hpatches . Patches that fail the
additional tests are moved to Vpatches , while patches that pass
all new tests remain in Hpatches .

The overall workflow ends after a predefined timeout or
when the user stops the search. EVOREPAIR generates the sets
Hpatches (the most promising repair candidates that survived
all generated test cases) and Htests (the augmented test suite
as an additional artifact for the user).

B. Illustrative Example

To further illustrate our proposed workflow, we show an
example that is inspired by the bug report for MATH-227
[14], and the corresponding subject in Defects4J math-95. The
original bug is in the class FDistributionImpl inside
the method getInitialDomain, which accesses the initial
domain value for an F-distribution. In our example, we kept
the nature of the bug but simplified the context. Figure 2a
depicts a snippet of the bug report for MATH-227, describing
the flawed behavior and the expected behavior.

The buggy program (see Figure 2b) takes the desired
probability p and the denominator degrees of freedom d. In
particular, there are two incorrect behaviors: (1) for d = 2
there is a divide by zero error, because the divisor in line 2 is
zero, and (2) for d = 1 the return value is negative. Both of
these are unexpected behavior, which was reported by a user in
the bug report (Figure 2a). Therefore, we create an oracle (see
Figure 2d) in Section III, which makes the boundary check
explicit and throws a custom exception, which is recognized
by our test generation.

We assume that there is one failing developer test tf with
p = 0.49, d = 2.0, and an assertion that checks ret < M



for large constant M . In the execution of EVOREPAIR, Step
2 generates two plausible patches so that we have

Hpatches = {p1, p2}

Both p1, p2 pass the initially failing test case tf . After return-
ing to Step 1 and deciding that new tests should be generated,
Step 6 produces a new test t1 with p = 0.6 and d = 2.0 that
kills p1. Note that t1 (as all additionally generated tests) does
not define an assertion inside the test method but instead uses
our custom oracle ret < M . After the patch assessment in
Step 5, the patch sets are updated to

Hpatches = {p2} Vpatches = {p1}

Inspired by the edits in p1 and the updated Htests = {t1},
a new iteration of repair generation produces the patch p3
that passes all current tests. Another round of test generation
produces t2 with p = 0.49 and d = 1.0 kills p2 and p3 so that
after patch assessment we have

Vpatches = {p1, p2, p3} Hpatches = ∅ Htests = {t1, t2}

Figure 3 shows all generated patches and the resulting final
patch and test sets are:

Vpatches = {p1, p2, p3} Hpatches = {p4} Htests = {t1, t2}

We illustrate the concept of the coevolution of tests and
patches, and that using bug-report-derived oracles, the test
generation was able to kill overfitting patches. Overfitting
patches are not completely discarded but re-purposed as seeds
and ingredients for future repair generations, and finally, are
evolved to the resulting correct patch.

III. TEST ORACLES

One of the fundamental challenges in software testing is
the test oracle problem [15], [16], [17]. It is concerned with
determining the expected behavior of a program. In our case,
we have to reason about the additionally generated tests, and
hence, we also need an oracle. There are learning-based test or-
acle construction techniques like SEER [18], TOGA [19], and
ODS [20], and other heuristics-based techniques [21], [22],
[23] to identify likely overfitting or likely incorrect patches.
However, all these techniques only provide an approximation.
While they can be used for patch assessment and ranking, we
cannot use them to confidently prune patches in our coevolu-
tion context. Therefore, we decided to use the natural language
specifications available in the bug reports in the Defects4J
benchmark to create user-originated oracles. Techniques like
JDoctor [24] and MeMo [25] can be used to extract speci-
fications from Javadoc comments, but they strongly depend
on the quality and structure of code comments. Preliminary
results showed that they do not perform well on the bug reports
included in Defects4J, which is why we opted to manually
extract the oracles from the bug reports. We envision that
the bug reporters could also write such oracles. Therefore,
we only use the information provided by the reporter rather
than the follow-up discussion of the maintainers, which is
often also included in the online bug reports. For creating

these oracles, we focused on the 59 subjects for which the
state-of-the-art search-based APR technique ARJA [11] can
generate plausible patches. We instrument the original buggy
program to check for the buggy behavior mentioned in the bug
report. If the buggy behavior is detected, the instrumentation
will throw a custom exception, which will cause the abortion
of the original program execution detected by our framework.
To some extent, this represents a hand-written, bug-report-
derived, functionality based oracle.

A. Oracle Writing Methodology

Using the bug report’s description, we first identify the
program location (i.e., class and method) where the incorrect
behavior is observed. Then, we extract the condition under
which the incorrect behavior is described. The instrumentation
usually involves writing a wrapper function around the original
code, which checks for a specific condition and throws a
custom exception if the condition is satisfied. In general, we
applied the template shown in Figure 2c.

Some bug reports mentioned unexpected exceptions,
so we need to add a try-catch-block around the original
method call. Note that our instrumentation can be
dynamically enabled (line 2 in Figure 2c), which
we enable by checking whether the system property
"defects4j.instrumentation.enabled" is set.
Therefore, we can enable the oracle only for the execution
of the newly added test methods. This becomes necessary
because our additional oracles can cause initially passing test
cases to fail. The reason is that our oracles make the buggy
behavior explicit and throw a custom runtime exception,
which might not be handled by the existing test cases.
However, a correct patch should also pass our oracle. In our
overall approach, we enable the oracles for newly generated
tests only and disable them for the existing tests.

For example, let us have a look at the report for MATH-227
mentioned in Section II. In the title of the report, the reporter
mentions an unexpected IllegalArgumentsException. Further
in the description, the reporter specifies that the problem is
caused by parameter values being outside of expected bounds.
Therefore, our instrumentation checks for these bounds and
throws a custom runtime exception as shown in Figure 2d.

Note that our instrumentation is applied at the location
where the bug reporter expects a program failure and makes
the incorrect behavior explicit by throwing an exception.
In contrast to other Information Retrieval (IR)-based tech-
niques [4], [26], this usage of the bug reports does not serve
the fault or fix localization but solely has the purpose of
guiding the test generation. Further, we believe that creating
such oracles needs a minor additional effort so that a bug
reporter could provide them. Such an oracle also could be
simplified to conventional assertions.

B. Failed Attempts

From the 59 subjects, we successfully created 39 oracles.
We could not formulate a meaningful oracle for the other 20
subjects because of missing information about the expected



behavior (14/20) or because no bug report was available (6/20).
In general, we require information about the condition under
which we can observe the failure and the observation location.
In most of the cases with insufficient information (7/14), the
report only provided a failing test case that did not allow for
generalization beyond the specific test. For six other reports,
there was no precise description of the condition under which
the program behaves incorrectly. For example, the report
for MATH-9491 describes that a method incorrectly always
returns zero, but did not specify when this is incorrect. Further,
one bug report only suggested a fix without mentioning the
buggy behavior. More information on these bug reports can
be found in our artifact.

C. Oracle Types

During the oracle creation, we observed a few patterns
that can be categorized as follows. For 20/39 subjects, the
bug report described that a particular exception, e.g., a null
pointer exception, should not be observed, indicating incorrect
behavior. For these subjects, we throw our custom exception
when catching the described exception to make the error
explicit. For 12/39 subjects, the reports mentioned a general
condition on the output or an intermediate value. In particular,
for 6/39 subjects, the reports described specific expected value
bounds. Additionally, one bug report described a property that
can be used for differential testing: a Java class was found
to be buggy by checking its output against another class that
implements the same functionality (see MATH-6312).

IV. COEVOLUTIONARY REPAIR

We propose a program repair framework based on coevo-
lution. Coevolution is defined as the simultaneous evolution
of multiple populations that belong to different domains;
the respective fitness functions guide the evolution of the
populations. In our case, we would evolve two populations:
a population of patches and a population of test cases. Specif-
ically, given a buggy program, an initial test suite, and an
oracle, we first search for some plausible patches to form the
initial patch population. The test suite and the patches are then
evolved alternately in search of test cases that invalidate the
current patches and of patches that pass the growing test suite.

The key observation behind the framework is that program
repair can be seen as a competitive coevolution problem.
Competitive coevolution is one where the fitness of indi-
viduals from different populations are inversely related; the
populations thus compete against each other. In the context of
program repair, a better patch can pass more test cases, while
a better test case can fail more patches. This duality makes a
natural competitive coevolution problem.

Benefit of the coevolutionary approach is also dual. On
the one hand, evolving the population of test cases improves
the specification of the buggy program and helps generate
less overfitting patches [2]. On the other hand, evolving the

1https://issues.apache.org/jira/browse/MATH-949
2https://issues.apache.org/jira/browse/MATH-631

Algorithm 1: COEVOLUTIONARY REPAIR

Input: buggy program, developer test suite
Output: plausible patches Hpatches

Output: additional test cases Htests

1 Hpatches ← ∅; Vpatches ← ∅; Htests ← ∅
2 while within timeout do
3 if evolve patch domain then
4 P ← Hpatches ∪ Vpatches ∪ randomPatches()
5 Psurviving, Ppartial ← evolve(P, fHtests)
6 Hpatches ← Hpatches ∪ Psurviving

7 Vpatches ← Vpatches ∪ Ppartial

8 else
9 T ← Htests ∪ randomTests()

10 Tkilling ← evolve(T, fHpatches
)

11 Htests ← Htests ∪ Tkilling

12

13 Hpatches, Pkilled ← update(Htests,Hpatches)
14 Vpatches ← Vpatches ∪ Pkilled

15 return Hpatches, Htests

population of patches is conducive to better test cases that
prune the patch pool more effectively.

Evolution of either population is performed by means of
an evolutionary search. An evolutionary search is guided by
a fitness function f . In each generation, the fitness of each
individual in a population is computed with f , based on which
some individuals are selected as parents. The parents then
undergo mutation and crossover to yield the next generation.
Note that patches and tests have their respective mutation and
crossover operators.

In our coevolutionary repair, the fitness of a patch is related
to its execution result on a selected set of test cases that have
failed some patch before. We denote this set with Htests and
denote the resulted fitness function with fHtests

. Likewise, we
have Hpatches and fHpatches

for guiding the evolution of test
cases. We summarize the workflow of coevolutionary repair in
Algorithm 1. The patch population is initialized with Hpatches ,
Vpatches and some random patches (to escape possible local
optima). The population then undergoes evolution under the
guidance of fHtests

to yield plausible patches Psurviving that
pass the developer test suite and the tests in Htests . We also
keep partial patches that pass the developer test suite but fail
on other tests in Htests ; these are stored in Vpatches , while
Psurviving are added to Hpatches . Evolution of test cases is
similar: the tests in Htests and some random tests are evolved
with the goal to find new tests (Tkilling) that kill patches
in Hpatches . These tests are added to Htests . Afterwards we
update Hpatches and Vpatches accordingly. We provide greater
details of our approach in the subsections below.

A. Search Space

We construct the search space of patch generation with
ARJA-e, which uses the statements in the buggy program as
well as a set of predefined templates as fix ingredients. The

https://issues.apache.org/jira/browse/MATH-949
https://issues.apache.org/jira/browse/MATH-631


search space of test generation is composed of all possible sets
of statements of sizes from 1 to N (i.e. n ∈ [1, N ]) where each
test case can have a size from 1 to L (i.e. l ∈ [1, L]).

The search space of EVOREPAIR is the combination of the
program repair space and the program test space. Such a large
search space requires an optimized navigation strategy [13].
Previous work have shown that a coevolutionary search is
much more effective for navigating such a large search space
than an evolutionary search [27]. In addition, such algorithms
can adaptively focus on relevant areas in the search space due
to the mutability of the fitness landscape.

B. Fitness Functions: Patch Generation

Compared to most coevolutionary algorithms, which use a
single objective for the selection of the population, the two
populations in our framework both require multiple objectives.
There are several benefits of using multi-objective fitness func-
tions to search for plausible patches in the context of program
repair [11]. An additional helper function (i.e., minimizing the
patch size) can alleviate the problem of convergence to local
minima. In addition, generating a plausible patch is necessary
but not sufficient for the developer. We leverage the same
fitness functions as defined in previous work [8] that uses the
patch size [11], [28], [8] and the failure rate on tests [11],
[29], [8], and formulate the optimization problem as follows:min f1(p)=

∑n
j=1 bj

min f2(p)=

∑
t∈Tpos

h(p,t)

|Tpos| + w×
(∑

t∈Tneg
h(p,t)

|Tneg|

)
(1)

where f1(p) represents the size of the patch p by counting the
number of edit operators in the patch, and f2(x) combines the
failure rate of the positive tests Tpos with the weighted failure
rate of the negative tests Tneg . w ∈ (0, 1] controls the bias
towards negative test cases. h(p, t) indicates how badly a test
failed on the patch by computing how far an assertion failure
was from the expected value (see details in [8]). We employ
NSGA-II [30] to minimize both objective functions.

C. Fitness Functions: Test Generation

For test cases, the fitness is computed using many objec-
tives: (1) the ability to cover the fix locations, (2) the ability
to cover the oracle location, (3) the ability to cover a target
location (i.e., fix or oracle location) through different contexts,
and (4) the ability to trigger our oracle’s custom exception
during mutation testing. The third and fourth objectives are
inspired by the intuition that a test case is more likely to
invalidate a patch if it tests the patch in multiple different
ways. The optimization problem can be formalized as follows:

min g1(t, p) = d(ploc, t)

min g2(t, p) = d(oloc, t)

min g3(t, p) = dcontext({ploc, oloc}, t)
min g4(t, p) = dmutant(ploc, t)

(2)

• g1(t, p) computes the distance of test t from covering the
fix location p.loc using approach level and normalized

branch distance [31]; similarly, g2(t, p) targets the oracle
location oloc.

• g3(t, p) computes the distance to a target location (i.e., fix
or oracle location) through a particular context (i.e., call
stack): We want to explore the different contexts where
each control dependency of a target location is indirectly
covered through invocation of other (public) methods.
The set of possible contexts can be (statically) derived
from the call graph of the class under test. Given a test
that covers a particular context, the fitness is computed
as the target location distance. If a test does not trigger
this context, it is assigned maximum distance instead.
This objective is a variation of the direct branch coverage
criterion [32].

• g4(t, p) computes the infection and propagation dis-
tance [33] w.r.t. a fix location mutant: To assess the
sensitivity of test cases to changes at the fix locations,
we perform strong mutation testing [34], [33] by applying
small mutants at all fix locations and guide test generation
towards ”killing” these mutants. A mutant is considered
to be killed if it leads to a state infection that propagates
to an assertable output difference. In patch testing, we are
particularly interested in killing mutants by throwing the
custom oracle exception. By targeting only the fix loca-
tions, we further tackle the scalability issue of traditional
mutation testing and control the budget allocation.

We employ DynaMOSA [35] to optimize the selection of test
cases and objectives for this many-objective problem over all
patches p ∈ Hpatches . In particular, we compute structural
dependencies between the individual objectives in the same
manner as for the traditional test case generation setting (i.e.,
based on the control dependency hierarchy). Note that for the
distance calculation we execute the original program.

V. IMPLEMENTATION

Our approach is implemented on top of EVOSUITE [6], a
testing framework based on multi-objective evolutionary algo-
rithms. It has interfaces for numerous evolutionary algorithms
such as MOSA [36], DynaMOSA [35], and NSGA-II [30],
and allows easy addition of new fitness functions. Below, we
explain our extensions to EVOSUITE, which have allowed it
to perform coevolution of patches and tests.

A. Test Generation

We base our test generation on the DynaMOSA algo-
rithm [35]. Originally, DynaMOSA has been introduced in the
context of the many-objective coverage problem for automated
test case generation. Our goal is not to produce a general test
suite but to generate test cases that can identify overfitting
patches. Therefore, we adapt the DynaMOSA implementation
in EVOSUITE as follows:

• Population Initialization: Instead of randomly initializing
the population, we use seeds from Htests .

• Test Case Evaluation: Our search employs several cus-
tomized fitness functions as introduced in Section IV-C.



• Extended Coverage Archive: The original coverage
archive in DynaMOSA contains test cases that reach a
target location not reached by previous test cases. We
have added to the archive test cases that kill program
mutants at the fix locations as well as any test case
that covers one of the target locations (i.e., fix or oracle
location). These additional test cases are helpful because
a single test reaching a location is usually not sufficient
to detect program behavior changed by a patch.

B. Patch Generation

The evolution in the space of program edits is based
on ARJA-e [8], which represents patches as chromosomes,
defines crossover and mutation operators of the chromosomes,
and evolves chromosomes by the NSGA-II algorithm. For
better usability, we have ported the patch representation and
the operators to EVOSUITE, which are interfaced with EVO-
SUITE’s NSGA-II implementation. In addition, we make the
following changes to EVOSUITE and ARJA-e:

• Avoiding Changes to the Oracles: For generated test cases
to rule out overfitting patches, an injected oracle should
remain in the program after a patch is applied. Therefore,
we identify the oracles from abstract syntax trees and
prevent generating patches that alter or remove them.

• Avoiding Using Oracles in Repair: We prevent using
statements from the oracles as fix ingredients, though
these statements can serve as fix ingredients in principle.
This is because we need to compare EVOREPAIR with
other tools, which may generate patches that change the
oracle and thus cannot handle a program with an oracle.

• Taking Seed Patches: Just as we provide seed test cases
for test generation, we also provide seed patches for
patch generation. A portion of the seeds are “best-so-far”
patches coming from Hpatches . Another portion comes
from Vpatches . By combining the two seed sources, we
hope to breed offspring patches that pass more test cases
while avoid falling into local optima.

VI. EVALUATION

In this section, we present the results of our evaluation for
the proposed coevolutionary repair process. We first show the
general effectiveness of EVOREPAIR in repairing bugs. We
then show that patch and test generation benefit each other,
confirming the usefulness of the coevolutionary approach.
Overall, we investigate the following research questions.
RQ1 How effective is EVOREPAIR in repairing bugs com-

pared to the state of the art of Java program repair?
RQ2 What is the impact of coevolution on patch generation?
RQ3 What is the impact of coevolution on test generation?

A. Evaluation Subjects

For our evaluation we use a subset of subjects from the pop-
ular DEFECTS4J [7] benchmark v1.0.1. We selected subjects
for which we were able to generate a test oracle using the bug
report as discussed in Section III. Namely, we consider four
projects from DEFECTS4J: Chart, Lang, Math and Time.

In total, we include the 39 subjects for which we were able
to generate a test oracle (see Section III). Given the large
amount of CPU time required to run the experiment, we focus
on this limited subject set that can be fixed by our baseline
tool ARJA [11]. We do not consider the other 20 subjects that
do not have a test oracle because we focus on the coevolution
of tests and patches.

B. Evaluation Tools

We compare our proposed technique EVOREPAIR with
several state-of-the-art tools for Java program repair. We
evaluate the repairability for our subset of defects us-
ing ARJA [11], ARJA-e [8], JGENPROG [37], CARDU-
MEN [38], JKALI [39], JMUTREPAIR [40], NOPOL [41],
TBAR [9], and REWARDREPAIR [10]. We use the ASTOR
framework [37], which implements the techniques CARDU-
MEN, JKALI, JMUTREPAIR, and JGENPROG. Similarly, we
reuse the ARJA [11] framework for the implementations of
ARJA and ARJA-e. Since REWARDREPAIR assumes perfect
fault localization, we compute a list of fix locations prior
to invoking the model, using the Ochiai algorithm [42] via
GZoltar [43] framework. Note that only EVOREPAIR runs
on the instrumented version; all other tools are executed on
the original buggy program. EVOREPAIR does not use the
instrumentation for fix localization and instead relies on the
built-in spectrum-based fault localization in ARJA-e.

C. Experimental Setup

All our experiments were conducted on servers with 32
vCPU and 64GB memory using Docker containers. Addition-
ally we provide an NVIDIA GeForce RTX 4090 GPU for
REWARDREPAIR. We set a 2h timeout for all our experiments
per repair task following previous empirical studies [44].
Based on previous test runs, we set the internal timeout for
patch generation to 10 minutes and for test generation to 1
minute in each coevolution iteration. The experiment on each
subject is repeated for 10 times. For each tool, we report
the number of bugs for which it can consistently generate a
plausible patch in all 10 runs. We also report the cumulated
total number of bugs fixed in at least one of the 10 runs. For the
number of correctly fixed bugs (i.e., semantically equivalent
to the developer fix), we only report the total over 10 runs
in this paper since correct patches are sparse. However, we
include all experimental results in our artifact.

Seed Selection Parameters: EVOREPAIR seeds patch gen-
eration with patches from Hpatches and Vpatches . In the exper-
iment, we form 1

2 of the initial population from Hpatches and
1
4 from Vpatches , and the remaining 1

4 is randomly initialized.
When Hpatches and Vpatches do not have enough patches,
random patches are used instead. For test generation, 1

2 of the
initial population is from Htests , and the other 1

2 is randomly
initialized.

D. (RQ1) Efficacy of EVOREPAIR

Figure 4a depicts the number of bugs each tool could
plausibly fix in every one of the 10 runs. For brevity, we



(a) Plausible Patches (b) Correct Patches (c) Distribution of Patch Killing

Fig. 4: (a) Venn diagram of bugs for which repair tools found a plausible patch in every repetition. Omitted from the figure are
JGENPROG and ARJA-e. They consistently fixed 13 and 6 bugs, with 8 and 4 bugs overlapping with EVOREPAIR. The other
tools only fixed a subset of the bugs fixed by JGENPROG. (b) Venn diagram of bugs for which repair tools found a correct
patch in at least one repetition. (c) Distribution of experimental trials by the number of generations where an overfitting patch
is removed. The left axis shows the absolute number of trials while the right shows the relative number.

omit numbers from CARDUMEN, JKALI, and JMUTREPAIR
as they are a subset of JGENPROG. For 24 bugs, EVOREPAIR
finds a plausible patch in every repetition, and there are 33
bugs for which EVOREPAIR was able to find a plausible patch
in at least one repetition. In comparison, REWARDREPAIR
consistently fixes 18 bugs; ARJA finds a plausible patch for
17 bugs in every repetition and for 21 bugs in at least one
repetition; TBAR consistently fixes 15 bugs, and ARJA-e finds
a plausible patch for 6 bugs in every repetition and for 19 bugs
in at least one iteration. None of the other tools have fixed
more than 15 bugs.

EVOREPAIR also produced more correct patches. As shown
in Figure 4b, over the 10 repetitions, EVOREPAIR correctly
fixed 8 of the 39 bugs. This is followed by ARJA, ARJA-e,
and REWARDREPAIR, which correctly fixed 7, 5, and 3 bugs.
The other tools correctly fixed no more than 2 bugs each. Note
that, although ARJA and ARJA-e had similar performance
with EVOREPAIR, they generated more than 200 plausible
patches on average for each bug. In contrast, EVOREPAIR
maintains no more than 20 patches in the hall of fame. We
also notice from Figure 4b that EVOREPAIR, ARJA, and
REWARDREPAIR have several uniquely fixed bugs, due to the
different search strategies of the tools.

E. (RQ2) Impact of Coevolution on Patch Generation

Intuitively, patch quality is improved because the additional
test cases can remove overfitting patches during the search
for a correct patch. As will be shown below, this intuition is
supported by our experiments.

We have collected the number of plausible patches gen-
erated and the number of patches killed in our experiments.
Overall, about 14,500 patches were generated, of which over
10,000 were killed, making a signification reduction of 69.0%
to the patch pool. We further investigate how these reductions
are distributed among experimental trials and among the
coevolotion generations within the trials. Of our 390 trials
(39 subjects × 10 repetitions), 308 have generated plausible

patches. In these trials, it is desirable if overfitting patches
have been detected in different generations, which would mean
that the test cases were constantly pruning the patch pools.
We plot in Figure 4c the distribution of the 308 trials by the
number of coevolution generations where an overfitting patch
was detected. A total of over 35% of the trials have plausible
patches killed in more than one generation, and over 25%
of the trials have plausible patches killed in three or more
generations. This means that in a reasonable number of trials,
the test cases are steadily removing overfitting patches.

The steady pruning of patch pools has led to a gradual
improvement in the quality of the generated patches. The
quality of patches found in a certain generation can be reflected
by survival rate, which is the fraction of these patches that
survive until the end of coevolution. From our 390 trials, we
have collected the survival rate of patches for the 162 trials
that have both plausible patches found in multiple generations
and at least one surviving patch. These trials can be further
divided into three categories, each represented by a line in
Figure 5a. In 71 (43.8%) trials, survival rates were always one,
represented by the Lang-43 line in Figure 5a, which means no
test case was generated that could kill a patch. In 62 (38.3%)
trials, survival rates have monotonically increased throughout
the coevolutions, represented by the Math-70 line. Only in
29 (17.9%) trials, the survival rate dropped at some point;
however, the survival rate may still go back up (see Lang-39).

In order to see whether coevolution can help improve
patch quality of other repair tools, we have also pruned
patch pools of the other tools with our test cases. Figure 5b
shows the fraction of overfitting patches by each repair tool
detected by the additional test cases generated by EVOREPAIR.
While the test cases had not been generated to target these
patches, more than 60% of the plausible patches generated by
REWARDREPAIR, JGENPROG, and CARDUMEN are removed,
and minimum of 33% of the plausible patches generated by the
other tools are also removed. The high proportions of detected
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Fig. 5: (a) Change in the survival rate of plausible patches over coevolution generations in three representative trials. (b)
Percentage of patches of each repair tool killed by additional test cases. (c) Probability of a triggering test and an average test
to kill patches on 20 bugs (y-axis on a log scale).

overfitting patches show the great potential of coevolution in
improving patch quality of different repair tools.

F. (RQ3) Impact of Coevolution on Test Generation

This section demonstrates that our coevolutionary workflow
improves the quality of generated test suites. In particular, we
illustrate the effectiveness of our fitness functions by showing
the effectiveness of our core intuition: triggering the custom
exception on the original program is a good predictor of
whether it can kill a patch, i.e., trigger the exception on a
patched program. This intuition directly motivates the fitness
function g2 and indirectly also g3 and g4 (see Section IV-C).

To illustrate this, we have compared in Figure 5c how likely
it is for a triggering test and for an average test to kill at
least one patch. The comparison is performed on 20 bugs for
which there are both triggering tests and killing tests. Note
that the y-axis is on a log scale. A test that triggers the oracle
on the original program has a much higher probability (10.9x
on average and 70.4x maximum) of killing a plausible patch
afterwards. In other words, the fitness function performs well
in selecting potential killing tests.

G. Threats to Validity

External Validity: To mitigate the selection bias for our
comparison with the state-of-the-art APR tools, we selected
the seven best-performing tools reported in previously studied
large-scale empirical evaluations [44] and REWARDREPAIR
as the more recent state of the art learning based tool [10].
Since our implementation is based on ARJA, we focused the
benchmark selection on the subjects in Defects4J, for which
ARJA can find plausible patches. In the future, we plan to
evaluate the efficacy of EVOREPAIR on a more diverse set of
subjects in recently proposed data-sets [45], [46] of Java bugs.

Internal Validity: EVOREPAIR and the state-of-the-art Java
repair tools in our comparison have non-deterministic compo-
nents, and hence, can produce different results for different
runs. To alleviate the threat of random observations, we ran
each of the repair tasks 10 times and report the average values.

Our artifact includes all experimental results. An additional
threat to internal validity is that the manually written test
oracles may not be fully correct if the referenced bug reports
are incomplete or incorrect. Two of the authors independently
double-checked the correctness of written oracles with respect
to the available bug reports. Finally, our experiments used a
two-hour timeout, and it is possible that larger timeouts can
lead to other observations.

Construct Validity: Our analysis focuses primarily on iden-
tifying test-adequate (i.e., plausible) patches; however, these
patches can still be incorrect due to the overfitting issue [2].
EVOREPAIR mitigates the overfitting issue by generating ad-
ditional tests. Further, we also manually assess and report the
correctness of the identified patches.

Our replication package is available via:
https://figshare.com/s/d800c8b6498d207f2cdd

VII. RELATED WORK

The related work includes automated coevolutionary
searches, especially for tests and patches, testing and repair (in
particular, the approaches that leverage evolutionary searches),
and test generation for patch testing.

A. Coevolution of Tests and Patches

Most related to our work is the approach by Arcuri and
Yao [5]. It takes a formal specification and a buggy program
as input and co-evolves test cases and programs using genetic
programming with the goal of repairing the buggy program.
The formal specification allows them to generate as many
unit tests as they want, which is an essential part of their
technique. Moreover, the designed fitness function that drives
the evolution is derived from the formal specification. With the
general lack of formal specifications in practice, we decided
to instead focus on available bug reports and extract generally
valid constraints on the expected behavior, and use them as
test oracles. The work of FIX2FIT [47] generates new tests (to
prune overfitting patches) but does not evolve existing ones.

https://figshare.com/s/d800c8b6498d207f2cdd


Our work is distinct in that it evolves the test and the patch
pool by reusing the mutation-based search in EVOSUITE.
In the past, EVOSUITE has been used to perform related
adaptions, e.g., to evolve assertions [48], [49]. Contrary to
these works, we do not invalidate the oracles. Instead, we use
the oracles for invalidating and evolving patches.

Concolic Program Repair (CPR) [50] proposes generat-
ing new tests to prune overfitting patches. CPR still needs
a lightweight, user-provided constraint to reason about the
generated patches. CPR does not mutate the patches after test
generation; their proposed refinement only removes overfitting
patches from the patch pool. The limitation in CPR is the
assumption of having the correct patch in the patch pool,
whereby the correct patch can be identified after the removal
of overfitting patches. We make no such assumptions.

B. Evolutionary Repair

Automated Program Repair (APR) [1] can be broadly cat-
egorized into three areas: search-based, semantic-based, and
learning-based. EVOREPAIR is most related to evolutionary
repair algorithms such as GENPROG [29] that operate under
the redundancy assumption, also known as the plastic surgery
hypothesis [51]. The assumption is that the repair ingredients
can be extracted from elsewhere in the buggy program itself.
Empirical studies [44] show that this assumption does not
hold true for most of the bugs in the popular Defects4J
benchmark [7]. Repair techniques that restrict the search space
to the buggy program itself have not been able to successfully
find a plausible patch for many of the bugs in the considered
benchmarks. ARJA-e [8] is a more recent study on more
fine-grained changes that extends the search space beyond the
redundancy assumption, allowing to fix a much higher number
of bugs in the Defects4J benchmark. Similar to SimFix [52],
it combines the search space with repair templates [9], [53]
and extends the redundancy assumption by allowing more
fine-grained modifications to AST node elements, thereby
expanding the search space. Modifying AST node elements
by replacing them with similar alternatives provides ARJA-
e the capability to generate new code, which allows fixing
bugs previously not fixed by its predecessors ARJA [11] and
GENPROG [29]. Since ARJA-e represents the state of the art in
evolutionary repair, we build our repair based on the patch enu-
meration in ARJA-e. Note that approaches like VarFix [28],
which exploit similarities between test executions to speed up
the exploration, are complementary to our approach.

C. Evolutionary Testing

Our implementation builds on EVOSUITE [6], the state-of-
the-art evolutionary framework for whole test suite generation.
Driven by coverage metrics, the test generation thereby han-
dles test data instantiation, method call sequences, and retrieval
of regression oracles via mutation testing. In our program
repair context, we have no access to a reference solution
and hence cannot use the regression oracles generated by
EVOSUITE. Instead, we have to generate our own test oracles.
EVOSUITE interfaces with numerous genetic algorithms such

as MOSA [36], DynaMOSA [35], and NSGA-II [30]. EVORE-
PAIR also incorporates these well-researched search strategies
for multiple objectives in each domain.

D. Test Generation for Patch Testing

Existing works in patch testing aim at alleviating the overfit-
ting issue [50], [47], [54]. For example, CPR [50] co-explores
tests and abstract patches with the goal of alleviating overfit-
ting patches. It generates new test cases with a lightweight,
user-provided constraint as a test oracle. However, CPR does
not mutate the patches after test generation but simply refines
the abstract patches to exclude patches that violate the test or-
acle. Fix2Fit [47] identifies overfitting patches by using grey-
box fuzzing to generate new tests and using crash-freedom as
an oracle. It is a post-processing technique that can enhance
any APR technique. Differently, UnsatGuided [54] targets
input data of synthesis-based repair techniques like Nopol [41]
and Semfix [55]. It aims to strengthen repair constraints by
generating additional tests that can supplement the developer
test suite. They show that their approach can indeed help
to prune patches that are overfitting because of regression-
introducing edits. However, they also acknowledged that due
to the oracle problem, UnsatGuided is unsuccessful in pruning
other kinds of overfitting patches. Other works in patch testing
focus on the identification of regression errors [56], [57], [58].
In contrast to these techniques, EVOREPAIR evolves the test
pool as well as the patch pool via re-use of the mutation-based
search in EVOSUITE, and goes beyond regression errors with
test oracles derived from bug reports. We further integrate test
generation as an integral element of the coevolution, instead
of having it as a pre- or post-process of APR.

VIII. CONCLUSION

Our work presents a practical perspective on the coevolution
of patches and tests. We addressed the oracle problem in
test generation not by assuming a formal specification but
by considering which information and requirements a user
and bug reporter can provide. Therefore, we extracted test
oracles from bug reports in DEFECTS4J. We implemented the
proposed workflow in our tool EVOREPAIR as an extension
of EVOSUITE, a well-known tool for test generation. We
hope that our practical assumption of test oracles and the
integration into EVOSUITE lowers the entrance barrier for
software developers to apply APR in practice. Furthermore,
the coevolution concept is not restricted to EVOSUITE and can
be ported to other patch and test generators. Our evaluation,
including the comparison with the state-of-the-art techniques,
shows that EVOREPAIR is highly competitive and that the
coevolution improves the patch and test quality.
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