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ABSTRACT

Automated Program Repair (APR) improves developer productivity

by saving debugging and bug-fixing time. While APR has been

extensively explored for C/C++ and Java programs, there is little

research on bugs in PHP programs due to the lack of a bench-

mark PHP bug dataset. This is surprising given that PHP has been

one of the most widely used server-side languages for over two

decades, being used in a variety of contexts such as e-commerce,

social networking, and content management. This paper presents a

benchmark dataset of PHP bugs on real-world applications called

BugsPHP, which can enable research on analysis, testing, and re-

pair for PHP programs. The dataset consists of training and test

datasets, separately curated from GitHub and processed locally. The

training dataset includes more than 600,000 bug-fixing commits.

The test dataset contains 513 manually validated bug-fixing com-

mits equipped with developer-provided test cases to assess patch

correctness.
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1 INTRODUCTION

Manually fixing software bugs is a tedious and time-consuming task.

Software engineers must invest significant time and effort in finding

and fixing bugs in software programs. For example, O’Dell et al. in

[13] have mentioned that developers spend 50% of programming

time finding and fixing bugs. As a solution, Automated Program
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Repair (APR) [5] has been explored to reduce the bug-fixing effort

and increase developer productivity. Given the buggy program,

APR tools automatically generate potential patches for software

bugs. APR tools analyze the buggy program to determine the root

cause and create a patch that fixes the bug while preserving the

original program functionality [11]. Most of the existing APR tools,

particularly the learning-based ones, have been implemented for

bug repair in C, Java, Python, and JavaScript languages owing to

the availability of large datasets for those languages. Surprisingly,

despite being the most popular server-side scripting language, there

is no benchmark bug dataset for PHP.

PHP is an open-source and general-purpose language that pow-

ers many large-scale web applications like Facebook, Wikipedia,

and WordPress. Owing to the easiness of programming, PHP is still

among the top choices for web development, and PHP is used by

77.5% of websites as the server-side scripting language [1]. Weak

typing, poor performance, and lack of debugging tools cause errors

in PHP web applications. Despite its popularity, the research com-

munity has paid little attention to developing techniques to improve

PHP programs. A well-organized labeled PHP bugs dataset must

be introduced to facilitate further studies of the software evolution,

maintenance, and repair of PHP applications.

In this work, we introduce BugsPHP, a data-set of PHP programs

that can be used to train deep learning models and evaluate any

APR technique including traditional techniques that are not learn-

ing models. BugsPHP contains 653606 bug fixing commits and a

separate set of 513 bug fixing commits equipped with at least one

failing test case, by crawling 5000 GitHub repositories with PHP

code. We collect commits from 01 Jan 2020 to Mar 2023. For the test

data-set construction, we carry out a manual test case validation

by running developer provided test cases on the fixed version of

the program. We select the commits with at least one failing test

case from its parent commit, resulting in 513 bugs from 15 PHP

applications that constitute the buggy version, fixed version, and re-

lated test cases. Excluding the project repositories used for the test

data-set, the remaining projects are used to construct the training

data-set. This paper makes three main contributions:

• A PHP bug dataset called BugsPHP consisting of 513 PHP

bugs for testing and 653606 for training deep learningmodels

from popular open-source projects.

• Analysis of the types of errors in PHP applications captured

in BugsPHP

• Preliminary results of the effectiveness of existing APR Mod-

els to fix errors in PHP applications

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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2 MOTIVATION

PHP is the most popular server-side language used bymajor web ap-

plications, including Facebook,Wikipedia, Tumblr, Slack,MailChimp,

Etsy, and WordPress. Facebook alone boasts 2.9 billion users glob-

ally, while Wikipedia has received around 5 billion visits in the first

5 months of 2022. Slack is expected to have 32.3 million monthly

users by 2023, and WordPress has been used to create 810 million

websites, accounting for 43% of all websites.

However, like any other software, PHP programs can have bugs

ranging from minor issues to major security flaws. These bugs can

lead to severe problems such as data loss or unauthorized access

by attackers who exploit vulnerabilities in web applications. For

instance, the 2017 Equifax data breach [10] cost the company $700

million in expenses and lost revenue due to a flaw in the company’s

web application and affected nearly 150 million clients, about 56% of

Americans. 87 million records of US resident profiles were obtained

through Facebook as the most significant data breaches on online

social networks as of 2020, and the data was used to create software

that could predict and influence electors [2].

Nevertheless, manually fixing program bugs can be costly and

time-consuming, causing delays in releasing new features or prod-

ucts. To save resources and time, developers can use efficient tools

and methods to identify and resolve these issues, enabling them to

focus on creating high-quality software. To better understand the

nature of bugs in PHP applications, there is a need for a standard

dataset to study the different types of bugs and their required fixes.

Additionally, a comprehensive dataset can facilitate the analysis of

patterns and traits of PHP bugs over time, investigating their effects

on web application security and developing innovative software

testing and verification methods.

This work aims to fill this gap by curating a list of PHP bugs from

the most popular open-source PHP applications. Researchers can

use our work to evaluate program repair tools for PHP applications.

Furthermore, this dataset can be applied to identify insecure code,

detect code smells and create new methods and tools for debugging

PHP bugs. Overall, this research aims to benefit the community by

offering a valuable dataset of PHP bugs.

3 RELATEDWORK

The existing work in analyzing program bugs has curated datasets

focused on Java, C, Python, and JavaScript bugs. For example,

Defects4J[8] is a framework and database that offers genuine Java

program bugs for reproducible research in software testing. It has

357 bugs from five open-source programs, each with a complete test

suite that exposes the bug. It’s expandable, and new bugs can be eas-

ily added to the database once a program is set up. Bugs.jar [14] is

an extensive data collection useful for researching automated Java

program debugging, testing, and patching. It contains 1,158 bugs

and patches from 8 open-source Java projects representing eight im-

portant application categories. BEARS [12] is a project that creates

a flexible benchmark for automatic repair studies in Java. It collects

and stores bugs by identifying potential pairs of faulty and fixed

program versions from open-source projects on GitHub. BEARS

is publicly accessible and includes 251 reproducible bugs from 72

projects that use the Travis CI and Maven build environment.

TheManyBugs and IntroClass datasets [9] comprise 1,183 defects

found in 15 C/C++ programs. ManyBugs contains bugs from well-

known open-source projects, while IntroClass contains bugs from

programming assignments done by a small group of students. The

datasets BugsJS [6] and FixJS [4] are collections of JavaScript bugs.

BugsJS features 453 actual bugs that have been verified manually.

These bugs are taken from 10 widely used server-side JavaScript

programs, which collectively have 444,000 lines of code. FixJS, on

the other hand, gathers bugs from GitHub and provides informa-

tion on the faulty and fixed versions of the same program. This

dataset comprises over 300,000 samples and includes details on

the commit, before/after states, and three source code representa-

tions. BugsInPy [16] is a dataset that collects real world bugs from

Python programs, where each is accompanied by a failing test case

that passes once the bug is fixed. Vul4J [3] is a more recent work

collecting vulnerability fixing commits for Java programs.

In contrast, BugsPHP is generic and contains information on PHP

bugs. Unlike previous datasets, we provide support for learning-

based and traditional APR techniques by providing a training dataset

and test cases for patch validation.

4 BUGSPHP DATASET

In this section, we present the methodology we followed to curate

a dataset of PHP bugs and provide a statistical overview. Our new

dataset, BugsPHP, includes a training dataset of 653,606 PHP bug-

fixing commits and a test dataset of 513 bugs from the most popular

open-source applications collected from GitHub between 01 Jan

2021 and March 2023.

4.1 Methodology

The process of curating the BugsPHP dataset is outlined in Figure 1.

Based on their stargazers count, we use the GitHub REST API to

retrieve the top 5000 PHP repositories with at least one commit

after 01 Jan 2021 (indicating recent development activities). We

avoid repositories that are not maintained by filtering those which

do not have recent development activities. Bugs are then collected

from these repositories and filtered based on the number of file and

line changes they have. After filtering, the top 75 repositories’ bugs

are used for the testing dataset, while the remaining repositories are

used for the training dataset. For the bugs in the training dataset, we

extract the buggy and fixed versions files for the BugsPHP training

dataset. Meanwhile, we conduct a dynamic validation for the bugs

in the testing dataset to obtain each bug’s corresponding buggy

version, fixed version, and test cases. Below, we elaborate on each

step of curating our dataset.

Repository Selection: To collect commits, we retrieve PHP

repositories using the GitHub REST API
1
. Then, we sort them by

popularity, measured using the stargazers count (e.g., the number

of stars) and the latest commit date. We select only repositories

with at least one commit date after 01 Jan 2021 to ensure that we

collect bugs from recently updated repositories. Finally, we collect

commits from the top 5,000 repositories.

Bug Collection: To collect bugs, we search for PHP projects on

GitHub and use the git version control system’s history to locate

issues and the corresponding solutions developers provided. We

1
https://docs.github.com/en/rest?apiVersion=2022-11-28
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GitHub REST API
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if ($plugin && Plugin::isLoaded($plugin)) {
   $parts = array_slice($parts, $i + 1);

10 
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commit and get
changed files

Buggy
Version

Files

Fixed
Version
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10 

Buggy Version

$plugin = implode('/', $pluginPart);
if (Plugin::isLoaded($plugin)) {
   $parts = array_slice($parts, $i + 1);

Manual Validation 
Removing repositories for which test cases cannot be run

Figure 1: The overview of the process of curating BugsPHP dataset. Blue lines and red lines represents the filtering

criteria for the test data-set and training data-set respectively.

follow previous studies (e.g., [15]) and look for commits with mes-

sages containing words like “fix", “solve", “bug", “issue", “problem"

or “error". Finally, we apply the following criteria similar to those

in [6] to filter out unusable data. a) developer fix is applied only

to PHP files b) developer patch should not contain file addition,

deletion, or renaming, as such modifications to the source files

are usually refactoring effects and can obfuscate the relevant fix c)

number of file changes should be 3 or fewer and d) number of line

changes should be equal to or less than 50. We then sort through

repositories containing the bugs that meet the criteria and have

bug fixes committed after 01 Jan 2020. Then, we choose the top

75 most popular repositories from this list to create the BugsPHP

testing dataset. The remaining repositories are used to select bugs

for the BugsPHP training dataset.

Dataset Labeling:We obtain the developer commits from the

set of repositories selected and designate the commit before the bug-

fixing commit as the buggy version of the program and the current

version as the fixed version of the program. Based on the labeled

developer commits, we extract the corresponding buggy version

and fixed version files from the repositories designated to obtain the

training commits to create the BugsPHP training dataset. The labeled

developer commits obtained from the test dataset repositories are

fed to the validation process. In creating the BugsPHP testing dataset,

we perform manual and dynamic validations on the bugs selected

for the testing dataset.

Manual Validation: In this step, we examine the latest bug to

validate a repository and see if its fixed version has accompanying

test cases that can verify the fix. We use the latest stable PHP

version, 8.1, to validate fixed versions with these test cases. We

selected PHP version 8.1 since it is the latest stable PHP version at

the time of writing. If the latest bug passes this step, we move that

repository to the dynamic validation. If not, we repeat the process

with the following bug with the next lower PHP version until we

find a bug that passes. This validation is done for each repository

until we find at least one bug that successfully passes the validation.

Thus, we remove repositories for which we do not find at least one

bug that can successfully run the validation.

Dynamic Validation: We run all the test cases on the fixed

version of the program and generate the test coverage report. Then,

using the test coverage report, we identify the relevant test cases

that reach the fixed version’s modified location(s). Next, we se-

lect the appropriate passing test cases covering the modified fix

locations within a neighborhood of 10 lines. Next, we run selected

relevant test cases on the buggy version of the program to identify

at least one test case that fails for that buggy version. Finally, we

choose the bugs with at least one failing test case. These validation

steps result in a testing dataset of 513 bugs, each consisting of the

buggy version, the fixed version, and the corresponding test cases.

The details of the BugsPHP testing dataset are shown in Table 1.

Training Data: We also curated a training dataset following sim-

ilar criteria for subject selection and bug collection in bug dataset

construction. In Subject selection, we used GitHub REST API
2
to

retrieve the GitHub repositories. Following steps similar to those

previously taken, we selected the first 5k repositories and removed

the repositories included in our bug dataset to curate a training

dataset. In the bugs collection step, we collected the bug fix com-

mits by checking "fix", "solve", "bug", "issue", "problem" or
"error" keywords included in the commit message. Then, we fil-

tered the bug fixes with the number of file changes less than or

equal to 3, and the number of line changes less than or equal to

50. Then, we extracted the changed files and labeled them buggy

2
https://docs.github.com/en/rest?apiVersion=2022-11-28
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Table 1: Overview of BugsPHP test dataset of PHP applications. BugsPHP tests were taken from the fix commit of the subject,

which corresponds to a passing test-case with the fix-commit. The test coverage columns summarize the coverage information

typically having a high coverage in terms of lines and functions.

Subject Repository Information Test Coverage

LOC # Bugs # Tests

Name Description Stars Forks Commits Lines Functions Classes

cakephp web application framework 8.6k 35k 44.6k 84.69% 73.59% 36.92% 358k 33 8322

carbon API extension for DateTime 16.1k 12k 3.4k 99.98% 99.75% 98.25% 316k 11 5898

composer dependency manager 27.6k 65k 12.0k 63.34% 49.35% 14.53% 107k 18 2240

dbal database abstraction layer 9k 12k 10.9k 65.52% 55.72% 29.28% 81k 9 4122

easywechat WeChat API for PHP applications 10k 24k 2.1k 56.02% 50.00% 20.25% 14k 9 178

framework web application framework 29.3k 99k 35.4k 74.91% 69.09% 32.28% 355k 94 8425

google-api-php-client Google API for PHP applications 8.5k 35k 1.8k 66.60% 55.56% 11.76% 11k 3 228

laravel-permission permission manager 11.2k 17k 1.3k 93.72% 80.29% 53.85% 8k 6 432

magento2 e-commerce platform 10.6k 92k 135.3k 46.15% 37.66% 29.52% 2854k 23 16224

monolog library for logging 20.3k 19k 2.6k 63.98% 52.97% 23.85% 27k 7 1139

orm object relation mapper 9.6k 25k 13.1k 84.27% 68.01% 45.09% 187k 15 3706

PHP-CS-Fixer linter for coding standards 11.9k 15k 8.8k 93.97% 87.45% 64.85% 225k 82 31774

PHP-Parser static analyzer for PHP 16.1k 0.9k 1.4k 92.69% 91.29% 85.90% 30k 3 1691

PhpSpreadsheet library for spereadsheet files 12.1k 30k 4.0k 80.01% 77.21% 52.25% 251k 12 14071

symfony web application framework 28.2k 90k 63.9k 80.66% 65.67% 36.09% 1579k 188 41083

Total / Average 229.1k 570.9k 340.6k 76.43% 67.57% 42.31% 6.4M 513 139k

and fixed. We collected 653,606 bugs from 4483 PHP applications.

Finally, we included a metafile that contains the commit ID, reposi-

tory, changed line numbers, etc, for each data point.

4.2 Overview of the BugsPHP Dataset

We analyzed the size of the fix commits in terms of the number

of line and file changes to understand the complexities of the fix

commits. Most commits modify only 1 file, with 76.3% of the train-

ing dataset (498940 fix commits) and 92.2% of the testing dataset

(473 bugs) representing single file changes. The percentage of fix

commits with 2 and 3 file changes in the training dataset are 14.2%

and 9.5%, respectively. In the test dataset, 5.8% of the dataset (30

bugs) have two file changes, whereas 2% of the dataset (10 bugs)

have three file changes. A similar pattern exists for the number of

lines of the commits. In the training dataset, 67.1% of commits have

1-10 line changes; in the testing dataset, 68% of bugs fall within

this range. Also, the training dataset contains 101776 fix commits

(15.6%) with 11-20 line changes, 50195 fix commits (7.7%) with 21-30

line changes, 31081 fix commits (4.8%) with 31-40 line changes, and

30760 fix commits (4.8%) 41-50 line changes.

In addition to the size of the patches, we also analyzed the types

of bugs in our test dataset. We identified 462 bugs (90%) as func-

tional errors, while the remaining bugs consist of 16 type errors, 15

security vulnerabilities, 13 compatibility issues, 5 usability issues

and 2 performance bugs.

5 PRELIMINARY RESULTS WITH APR

With our training data, we train two learning-based APR models,

CURE [7] and RewardRepair [17], and evaluate using 513 bugs in

our test data. For each model, we generate 100 candidate patches

per bug. Table 2 shows the patch result of each model. Columns

𝑁𝐶 , 𝑁𝑉 and 𝑁𝑃 depicts # bugs a candidate patch was generated,

failing test cases are fixed, and that pass all test cases, respectively.

Similarly columns 𝑁𝐸 and 𝑁𝐼 depicts # bugs with a semantically

equivalent patch and a identical patch, respectively.

Table 2: Efficacy of APR models in BugsPHP

Model 𝑁𝐶 𝑁𝑉 𝑁𝑃 𝑁𝐸 𝑁𝐼

CURE 443 48 11 1 0

RewardRepair 513 103 43 13 6

RewardRepair generates a patch for 103 bugs that pass the fail-

ing test cases, but CURE generates patches only for 48 bugs. Re-

wardRepair fixes 43 bugs out of these bugs, and CURE fixes 11

bugs, which passed all test cases. RewardRepair can generate 3-4

line patches, while CURE only generates single line patches. Re-

wardRepair fixes 29 unique while CURE fixes four unique bugs.

Both APR models commonly fixed seven bugs. However, none of

the APR models could fix 473 bugs in our test dataset. We show that

existing APR models can be evaluated using our new data set, and

further research is needed to improve the capabilities of existing

APR for PHP bugs.

6 CONCLUSION

PHP has been the most popular server-side language for over two

decades, yet there is no dataset to study bugs appearing in PHP

applications. Hence, we have curated a dataset of bug-fixing com-

mits from the most popular open-source PHP applications to train

learning-based repair tools and evaluate program repair techniques.

BugsPHP contains a training dataset of 653,606 bug-fixing commits

and a test dataset of 513 bugs, which maintains developer-written

tests using the PHPUnit testing framework.

Data Set: Our dataset can be accessed via GitHub from the

following repository: https://github.com/bugsphp/bugsPHP.git
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