
Vulnerability Repair via

Concolic Execution and Code Mutations

RIDWAN SHARIFFDEEN, National University of Singapore, Singapore
CHRISTOPHER S. TIMPERLEY, Carnegie Mellon University, USA
YANNIC NOLLER, Ruhr University Bochum, Germany
CLAIRE LE GOUES, Carnegie Mellon University, USA
ABHIK ROYCHOUDHURY, National University of Singapore, Singapore

Security vulnerabilities detected via techniques like greybox fuzzing are often fixed with a significant time lag.
This increases the exposure of the software to vulnerabilities. Automated fixing of vulnerabilities where a tool
can generate fix suggestions is thus of value. In this work, we present such a tool, called CrashRepair, to
automatically generate fix suggestions using concolic execution, specification inference, and search techniques.
Our approach avoids generating fix suggestions merely at the crash location because such fixes often disable
the manifestation of the error instead of fixing the error. Instead, based on sanitizer-guided concolic execution,
we infer desired constraints at specific program locations and then opportunistically search for code mutations
that help respect those constraints. Our technique only requires a single detected vulnerability or exploit as
input; it does not require any user-provided properties. Evaluation results on a wide variety of CVEs in the
VulnLoc benchmark, show CrashRepair achieves greater efficacy than state-of-the-art vulnerability repair
tools like Senx. The repairs suggested come in the form of a ranked set of patches at different locations, and
we show that on most occasions, the desired fix is among the top-3 fixes reported by CrashRepair.

ACM Reference Format:
Ridwan Shariffdeen, Christopher S. Timperley, Yannic Noller, Claire Le Goues, and Abhik Roychoudhury.
2024. Vulnerability Repair via Concolic Execution and Code Mutations. 1, 1 (November 2024), 27 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The reliance on open-source software makes our infrastructures prone to the security vulnerabilities
of such software. Today, there exist significant challenges in finding and fixing vulnerabilities. First of
all, the software typically needs to undergo a campaign of greybox fuzzing to find inputs witnessing
the vulnerabilities. Subsequently, even when the vulnerabilities are reported and constructed as
CVEs, theymay remain unpatched for long [12, 20]. This leads to significant exposure of the software
to vulnerabilities. In this work, we take a step towards reducing the lag between detection and
repair of security vulnerabilities. In principle, this could be achieved by merging the fixing process
as part of a fuzzing campaign. However, naively attaching an automated fixing process as part of
the fuzzing campaign would insert fixes based on a set of tests, which can introduce errors visible
in other (unavailable) tests. This corresponds to the well-known problem of producing overfitting

Authors’ addresses: Ridwan Shariffdeen, National University of Singapore, Singapore, ridwan@comp.nus.edu.sg; Christopher
S. Timperley, Carnegie Mellon University, USA, ctimperley@cmu.edu; Yannic Noller, Ruhr University Bochum, Germany,
yannic.noller@acm.org; Claire Le Goues, Carnegie Mellon University, USA, clegoues@cs.cmu.edu; Abhik Roychoudhury,
National University of Singapore, Singapore, abhik@comp.nus.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Association for Computing Machinery.
XXXX-XXXX/2024/11-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: November 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Shariffdeen et al.

Bug Detection and
Exploit Generation

Identify potential fix
locations and repair
constraints based

on concolic execution

Use the constraints
to guide source-level
code mutations that

fix the issue

Rank patches based
on their distance from

the crash location

Differential Fuzzing
to identify patches
with side-effects

Ranking

Validation

RepairLocalizationInitial Detection 10 2

3

4

Fig. 1. High-level Overview of CrashRepair.

patches in program repair [42]. Thus, any attempt to automatically fix detected vulnerabilities
should be able to generalize based on the observed vulnerability or exploit.
Automated Program Repair (APR) [24] is an emerging technology that seeks to rectify errors

or vulnerabilities automatically. Most automated repair techniques are test-driven, requiring a
test suite in the form of input-output examples to rectify errors. The goal is often to generate a
(minimal) change in the source code so that the patched code meets the input-output examples.
While test-driven program repair is promising, it keeps the error fixing as post-processing to error-
finding. Since a large number of errors are reported daily, and CVEs are created regularly, there
is always a process of prioritization of "which error to fix". In addition, the lack of workforce for
fixing known vulnerabilities leads to a time lag between finding and fixing a vulnerability. Recent
works on security vulnerability repair, such as Senx [21], ExtractFix [17], and CPR [39], ease the
task of fixing by relaxing the dependence on tests (i.e. requiring a single failing test witnessing the
vulnerability). However, Senx depends on user-given properties, and its repair space only considers
the first fix location that helps to avoid the identified property violation and adds a corresponding
check. CPR [39] also depends on user-provided constraints and does not handle the issue of fault
localization. ExtractFix [17] performs an expensive weakest precondition of the violated security
constraint and patches the program by adding checks.

This work focuses on greater security automation, specifically for security vulnerability repair in
programs. We reduce the dependence on tests and require only one exploit, which is a common
form of bug reporting for software vulnerabilities. We do not require any user-provided constraint
on desired behavior - and instead use concolic execution to generalize the single test, which in turn
helps produce repair constraints for the desired patches. Finally, our patch generation is not limited
to conditionals, instead patches meeting the repair constraint are flexibly generated by searching
over code mutations. Overall our approach provides a balance between the search-based and the
semantic approaches of program repair. Our approach has four main steps and takes a buggy
program and a single exploit as input (see Figure 1). In the first step, we identify a set of fix locations
and the corresponding repair constraints. We replay the failing input with concolic execution,
equipped with sanitizers to extract security-relevant property violations. Based on the collected
symbolic information and data dependencies, we determine which input parts are relevant for the
property violation and subsequently compute potential fix locations and their repair constraints.
In the second step, the collected repair ingredients from the semantic analysis are passed to a
search-based repair component, which uses source-level code mutations to generate patches to
satisfy the repair constraints. One can prioritize code mutations leading to smaller patches, thereby
achieving smaller changes to the buggy program. Step 3 ranks the generated patches based on the
distance from the crash location. Finally, in step 4, we validate the patches in order of their ranking;
in particular, it checks that (a) the patched code meets the repair constraints inferred (and hence
repairs the exploit input), and (b) the patched code does not introduce crashes. The validation uses

, Vol. 1, No. 1, Article . Publication date: November 2024.

Vulnerability Repair via

Concolic Execution and Code Mutations 3

a differential fuzzing campaign to generate inputs that explore the neighborhood of the original
exploit.
We evaluate our approach by comparing our implementation CrashRepair with the state-

of-art vulnerability repair techniques Senx [21], ExtractFix [17], VulnFix [49] using two recent
security-related benchmarks proposed by VulnLoc [41] and ExtractFix [17]. Our evaluation results
demonstrateCrashRepair’s ability to locate and repair more observed faults than the state of the art.
The experimental evaluation results show that CrashRepair outperforms existing state-of-the-art
vulnerability repair approaches.
In summary, we make the following technical contributions:
• a novel combination of symbolic analysis and search-based patch generation for security
vulnerability repair,
• the efficient usage of concolic execution to extract fix locations and corresponding repair
constraints, and the usage of code mutations to efficiently select patches,
• the implementation of our approach CrashRepair for C/C++ programs and its evaluation on
real-world security vulnerabilities.

Our approach has a key advantage: Our fix localization supports the generation of patch candidates
that not only disable errors or crashes at the crash location but do fix faults that may have been
introduced earlier in the execution.

2 MOTIVATIONAL EXAMPLE

To illustrate our approach, we want to start with a vulnerability that was reported for the LibTiff [3]
library and assigned the CVE number CVE-2016-10092. LibTiff is a library that provides utilities for
the Tag Image File Format (TIFF), a widely used format for storing image data. The bug was found
in the function readContigStripsIntoBuffer() by the greybox fuzzer AFL [1] and reported as a
heap buffer overflow [2] error. Listing 1 illustrates a simplified variant of the buggy code.
The specific buggy function handles the reading of bytes from an input image into a buffer for

further processing. The crashing input generated by AFL causes a heap-based buffer overflow in the
_TIFFmemcpy function in tif_unix.c in multiple versions of LibTIFF including 4.0.7 which allows
remote attackers to have unspecified impact via a crafted image. In the scenario, the bytes_read
gets assigned to a negative number, which later, in line 12, causes a buffer overflow triggered in a
different program location when accessing the pointer bufp.
1 static int readContigStripsIntoBuffer(TIFF* in, uint8* buf) {
2 uint8* bufp = buf;
3 int32 bytes_read = 0;
4 uint32 stripsize = TIFFStripSize(in);
5
6 for(strip = 0; strip < nstrips; strip ++) {
7 bytes_read = TIFFReadEncodedStrip(in, strip , bufp , -1);
8 rows = bytes_read / scanline_size;
9 if ((strip < (nstrips - 1)) && (bytes_read != (int32)stripsize))
10 TIFFError (...);
11
12 - bufp += bytes_read;
13 + bufp += stripsize;
14
15 }
16 return 1;
17 } /* end readContigStripsIntoBuffer */

Listing 1. Snippet of the buggy code in our illustrative example based on LibTiff program (CVE-2016-10092)

and the developer commit 9657bbe. Note the code is simplified to include only the relevant context for brevity.

Let us first consider the scenario where we use general test-based program repair techniques to
find a repair for our illustrative example. For this purpose, we use F1X [30] and Darjeeling [43]

, Vol. 1, No. 1, Article . Publication date: November 2024.

4 Shariffdeen et al.

(which is an optimized implementation of GenProg [23]). Figures 2a and 2b depict the patches
generated by F1X and Darjeeling, respectively. Since these two APR techniques require a test suite,
we created a test suite inclusive of the crashing test case generated by AFL and a passing test case
by randomly mutating the crashing test.

1 static int readContigStripsIntoBuffer
2 (TIFF* in, uint8* buf)
3 {
4 uint8* bufp = buf;
5 int32 bytes_read = 0;
6 uint32 stripsize = TIFFStripSize(in);
7
8 - for(strip = 0; strip < nstrips; strip++) {
9 + for(strip = 0; strip == nstrips; strip++) {

(a) Patch generated by F1X

1 static int readContigStripsIntoBuffer
2 (TIFF* in, uint8* buf)
3 {
4 uint8* bufp = buf;
5 int32 bytes_read = 0;
6 uint32 stripsize = TIFFStripSize(in);
7
8 - for(strip = 0; strip < nstrips; strip++) {
9 + for(strip = 0; strip > nstrips; strip++) {

(b) Patch generated by Darjeeling

Fig. 2. Patches generated using general Automated Program Repair (APR) techniques.

F1X and Darjeeling generate patches that modify the terminating condition of the for-loop
statement to avoid the failing test case. However, the fixes in Figures 2a and 2b do not generalize
for test cases beyond the given test suite since they only satisfy the two given test cases. Both
APR-generated patches fail to fix the buffer overflow vulnerability and instead generate patches that
simply pass the failing test case. F1X and Darjeeling are search-based techniques that enumerate the
search space of candidate patches in an attempt to satisfy the test suite. The generated patch would
likely be more general if sufficient test cases were provided. This example highlights one of the
limitations of current test-based APR techniques, generally known as the overfitting problem [42].
In a security context, we are usually left with a small number of test cases, and hence, unable to
use such APR techniques effectively. Furthermore, fixing security vulnerabilities cannot tolerate
inaccurate patches, which could lead to undesirable effects by believing that the vulnerability has
been fixed when, in fact, it has not. Therefore, there is a need for a vulnerability repair tool that
can generate fixes that generalize beyond a single failing test case. In the following text, we explain
step by step our proposed solution to generate the correct fix addressing the underlying buffer
overflow vulnerability.

First, we execute the buggy program with the crashing input generated by AFL, using concolic
execution [37]. Concolic execution is a lightweight form of symbolic execution [6], which uses a
concrete input to guide the program execution. Using concolic execution, one can obtain the sym-
bolic constraints and other symbolic information while concretely executing one specific program
path. For our purposes, we use concolic execution to reproduce the vulnerability to retrieve the
failing constraint from a sanitizer (i.e., AddressSanitizer and UndefinedBehaviorSanitizer).
Note that our concolic execution engine is an extension of the symbolic engine KLEE [6].

In our motivational example, the program crashes at function _TIFFmemcpy located in source file
libtiff/tif_unix.c at line 340. The bug is detected by the security properties checked by KLEE
during concolic execution. KLEE [6] is equipped with many security properties to detect bugs that
can be detected (i.e., if violated) while exploring the input space of the program under test. Users
can also extend the detection capabilities by encoding additional properties. In our example, KLEE
detects the violation of the following security property:

((base @var(pointer, d)) <= (@var(pointer, d))) (1)
The above security property captures a memory safety property for the pointer variable d,

that the memory address accessed by the pointer should be within the bounds of the memory

, Vol. 1, No. 1, Article . Publication date: November 2024.

Vulnerability Repair via

Concolic Execution and Code Mutations 5

allocation. In this case, the violation is on the lower bound, which is the base address of the
memory region. Variable d is a pointer used by the crashing function _TIFFmemcpy located in the
source file libtiff/tif_unix.c. The right-hand side of the constraint (@var(pointer, d))
depicts the current address captured by the pointer d. The left-hand side of the constraint is (base
@var(pointer, d)) depicts the base address for the pointer captured by the program variable d.
The base address is the starting address for the allocated memory region accessed by the pointer d.

The above constraint, which captures the violated security property, can be inferred as the
specification the repair must satisfy.We name this specification hereafter as the crash-free constraint
(CFC). Using the collected symbolic information, we can infer that the variable d, appearing in the CFC
at the crash location, is influenced by the variable bufp in function readContigStripsIntoBuffer.
In our concolic execution, we mark all memory allocations as symbolic memory, which allows us
to find the relationship between the pointer d at the crash location and the pointer bufp.

The pointer bufp is propagated via the function call TIFFReadEncodedStrip at line 7 in Listing 1.
Using dependency analysis, we can further detect which statements in the program have a data
dependency to the pointer bufp. In our example, the base pointer of the allocated buffer is referenced
in bufp, and the last memory address recorded by the pointer d at the crash location is mapped to
the expression bufp + C (where C denotes a constant). From these data-dependent relations, our fix
localization identifies 35 program locations in the execution trace. For each program location 𝑙 in
the execution trace, which has a data dependency, we attempt to translate the CFC extracted from
the crash location to the program location 𝑙 . Using the symbolic relations between the observed
program variables at program location 𝑙 in the execution trace and the variables appearing in
the CFC at the crash location, we can translate and localize the CFC to program location 𝑙 . Thus,
obtaining a new constraint at program location 𝑙 , with variables appearing at location 𝑙 .
For our example, line 12 highlighted in Listing 1 is listed as a potential fix location from our

dependency analysis. For the identified fix location, we compute the constraint using symbolic
expressions captured during concolic execution of the crashing input. By translating the Constraint 1
to the local variables at line 12 in Listing 1, we obtain:

((@var(pointer, bufp)) <= (@var(pointer, bufp)) + (@var(integer, bytes_read)))

Simplifying the above constraint, we obtain the Constraint 2 as the repair specification.

(0 <= (@var(integer, bytes_read))) (2)

Using additional information inferred from the Abstract Syntax Tree (AST) of the program and
the symbolic expressions, we can further determine that the right-hand side of the computation at
line 12 in Listing 1 can be enforced with the Constraint 3.

(0 <= (@result(integer))) (3)

The difference between Constraint 2 and Constraint 3 is that instead of expressing the CFC
in terms of the program variable, we specify the constraint to the result of an operation. In our
example, the arithmetic operation += at line 12 updates the pointer value for bufp with an offset
bytes_read. Our localization translates the CFC to the offset value used in the += operation rather
than on the program variable bytes_read used. Such fine-granular localization helps the repair
process to identify which expression to mutate precisely.
To further elaborate on the difference for this example, we list two fix localization information

in Table 1. For each location, we show the line, the constraint, and the values for the available
variables. For illustration purposes, we show only a subset of the variable values. Next, we apply
constraint-guided source-level mutations to fix the observed issue. For this example, we illustrate

, Vol. 1, No. 1, Article . Publication date: November 2024.

6 Shariffdeen et al.

Table 1. An extract of the localization results for our motivational example.

Line Column Repair Constraint State Values
12 17 (0 <=(@var(int,bytes_read))) (bytes_read, -1), (rows, -1), (stripsize, 2048)
12 25 (0 <= (@result(int))) (bytes_read, -1), (rows, -1), (stripsize, 2048)

three different operators of CrashRepair. The most common fix would be to insert a conditional
check and exit at line 12, e.g.:

if (!((0 <= bytes_read))) exit(1);

According to the test case in our example, the expected exit code is zero; therefore, this patch is not
plausible and can be removed using differential testing. Another template would be to add a guard
statement for the computation at line 12 using the obtained constraint:

if ((0 <= (bytes_read))) bufp += bytes_read;

This kind of expression guarding statements or strengthening existing conditions is a common
fix for security vulnerabilities. However, it also can lead to skipping essential program features.
In our example, this patch candidate can be removed by fuzzing-based differential testing. Fi-
nally, the observed heap buffer overflow issue can be avoided by enforcing the Constraint 3. The
constraint specifies that the right-hand side of the += expression should be a positive value. The
term @result(integer) in Constraint 3 can be filled with many possible program variables like
{nstrips, stripsize, rows}. This kind of expression mutation is guided by the provided con-
straint, which ensures that the replacing variable satisfies the repair constraint. In this example,
both bytes_read and rows do not satisfy the constraint, and only stripsize is applied.

bufp += bytes_read –> bufp += stripsize;

Lastly, we rank the patches based on the distance to the crash location. In the example, the
correct fix location has a distance value of 177 from the crash location. The distance is computed
as the number of unique lines in the trace of the exploit between the crash location and the fix
location. CrashRepair can place this location in the top-5 ranking, i.e., within an acceptable range
for developers to inspect [35]. Further, CrashRepair’s generated patch is also identical to the
developer patch. Interestingly, the same patch also mitigates another vulnerability CVE-2016-10272,
which implies the developer patch is a generalized fix and CrashRepair can correctly identify such
a generalized patch that is distant from the observed crash location.

3 APPROACH

Our approach assumes that a vulnerability has already been detected and that an error-triggering
input is available. These assumptions match the output of a successful fuzzing campaign. Starting
with these artifacts, we localize potential fix locations with corresponding repair constraints,
generate patches at these fix locations, and use differential testing to validate and rank the generated
patches. Figure 3 summarizes the workflow. In the following sections, we explain each of these
steps in detail.

CrashRepair is built on top of a concolic execution engine extended from KLEE and is equipped
with additional features to extract information from the execution trace T . For each executed
instruction, the concolic execution engine would record the debug information for the instruction
(i.e., mapping to the source location), the concrete values, the corresponding symbolic expression
that maintains the relationship between the symbolic variables, and the changes to the symbolic
memory. Using the debug information CrashRepair maps the symbolic expressions of each in-
struction to program-level expressions. Recording the changes to the symbolic memory allows to

, Vol. 1, No. 1, Article . Publication date: November 2024.

Vulnerability Repair via

Concolic Execution and Code Mutations 7

Fig. 3. Workflow of CrashRepair. Takes as input a program under test (PUT) with a crashing test case and

generates ranked patches that fixes the underlying root cause of the crash.

query additional information related to memory pointers, which would be beneficial in the later
stages of our repair (i.e., constraint generation). To detect the vulnerability exploited via the failing
test case 𝑡𝐹 , KLEE must be equipped with the necessary sanitizers. Although KLEE does not support
AddressSanitizer, its built-in memory error detection can identify most memory-related vulnera-
bilities. For other types of vulnerability detection, such as null pointer dereferences, divide by zero,
bad casting, and data type overflows, UndefinedBehaviorSanitizer can be equipped with the
program. Our concolic version of KLEE generates the necessary semantic information to generate
a crash-free constraint CFC at the crash location. The necessary semantic information includes the
crash instruction, precisely mapped source location, stack trace, memory allocation/deallocations,
and pointer aliases.
The high-level localization procedure is shown in Algorithm 1. The procedure ConcolicExec

(line 2) takes as input a program P and a test case 𝑡𝐹 and executes the program concretely while
capturing symbolic relations. CrashRepair concolically executes the program P with the given
failing test case 𝑡𝐹 , i.e., the execution follows the path for 𝑡𝐹 but also collects the symbolic information
for each instruction. All user inputs to the program and memory locations of the program are
marked as symbolic, and the program is executed concretely using the failing test case 𝑡𝐹 . While
executing each instruction 𝑖 , KLEE will internally check for security property violations. Upon
detecting such a violation, KLEE would terminate the concolic execution and generate the execution
trace T .

3.1 Constraint Generation

The procedure CrashAnalysis (line 3 in Algorithm 1) takes as input a program P and the execution
trace T generated by previous concolic execution. By analyzing the crashing instruction and parsing
the Abstract Syntax Tree (AST) of the program P, CrashAnalysis generates a constraint that
captures the security property violated in terms of program variables at the program crash location.
Therefore, this procedure will generate the crash-free constraint CFC and the set of symbolic
variables (S) tainted with the crash-free constraint.

First, the type of crash is determined based on the program stack trace, the executed crashing
statement/expression, taint values, and the error message. Once the crash type is determined a
template will be instantiated using the corresponding variables appearing in the crashing instruction.
Table 2 summarizes the different vulnerability types with their corresponding CFC templates.
338 void _TIFFmemcpy(void* d, const void* s, tmsize_t c)
339 {
340 memcpy(d, s, (size_t) c);
341 } /* end _TIFFmemcpy */

Listing 2. Crash function in our motivational example based on LibTiff program (CVE-2016-10092).

To illustrate this step, see Listing 2 that depicts the crashing function for our motivational
example. The program crashes at program location libtiff/tif_unix.c:340, which calls the
C library function memcpy. The pointer variable d passed as a parameter to the function memcpy

, Vol. 1, No. 1, Article . Publication date: November 2024.

8 Shariffdeen et al.

Table 2. Templates used to generate the Crash Free Constraint (CFC)

Error Type Example Expressions Constraint Template
Division by Zero a / b, a % b b != 0
Arithmetic Overflow a + b, a++, a x b MIN < a op| b < MAX
Memory Overflow *p p+sizeof(*p) ≤ 𝑏𝑎𝑠𝑒 (𝑝) + 𝑠𝑖𝑧𝑒 (𝑝)
Shift Overflow a « b MIN < b < MAX
Type Cast Overflow (long) a MIN < (long) a < MAX
Error in memcpy memcpy(d,s,n) d + n ≤ 𝑠 ∨ 𝑠 + 𝑛 ≤ 𝑑

Error in memmove memmove(d,s,n) |d - s| < n
Error in memset memset(p,s,n) p + n < base(p) + size(p)
Assertion Error assert(C) C
NULL Pointer Dereference *p p != 0

accesses an out-of-bound memory location, which leads to the program crash. The violated security
property is captured by the constraint ((base @var(pointer, d)) <= (@var(pointer, d))) .
KLEE’s symbolic analysis maps variable d to a symbolic memory𝑚 at the point of the program
crash. Hence the set of symbolic variables S is {𝑚}.

3.2 Fix Localization

The next step is to identify all program locations in the execution trace T that have a data de-
pendency to the set of symbolic variables S. CrashRepair analyzes all instructions in trace T
to identify potential fix locations. Procedure GetLine (line 6) translates each instruction 𝑖 to a
source location 𝑙 . Procedure GetFunction (line 6) queries the AST of the program to identify
the corresponding function 𝑓 . For each source location 𝑙 in the execution trace T , KLEE records
the observed symbolic values, which are extracted by the procedure SymbolicVar (line 6). The
symbolic source can be either user inputs to the program, memory locations manipulated by the
program, or both.

A program function 𝑓 is deemed as a potential fix function (lines 6-8) if any of the instructions
in the function 𝑓 uses a symbolic variable in S. This is determined by analyzing each instruction
in the execution trace T . Each instruction 𝑖 is mapped to a source location 𝑙 , which can be mapped
to a function 𝑓 . A program location 𝑙 is determined as a potential fix location if the observed
symbolic sources S′ at the location 𝑙 have an intersection with the symbolic sources S influencing
the program crash. If 𝑙 is a potential location, CrashRepair records the function 𝑓 in which 𝑙

belongs, thereby identifying all potential functions where a fix location can be determined. For
each identified function 𝑓 , CrashRepair then finds the earliest location in 𝑓 , which is also in the
execution trace T (lines 9-14) where all symbolic variables S are observed. A location 𝑙 in function
𝑓 executed in trace T where all possible symbolic variables are observed is a potential location to
enforce the crash-free constraint CFC.

In our motivational example, CrashRepair identifies four functions across four different source
files as candidate fix functions. This includes the crashing function _TIFFmemcpy and the func-
tion readContigStripsIntoBuffer, where the developer has applied the patch. Furthermore,
CrashRepair identifies 35 potential fix locations across these four functions that can be used to
generate a repair candidate.

, Vol. 1, No. 1, Article . Publication date: November 2024.

Vulnerability Repair via

Concolic Execution and Code Mutations 9

Algorithm 1: Fix Localization
Input: program P, failing test case 𝑡𝐹
Output: set of potential fix locations L

1 L ← ∅, F ← ∅
2 T ← ConcolicExec(P, 𝑡𝐹) // collect execution trace
3 CFC, S ← CrashAnalysis(T ,P) // generate a constraint for the violated security property
4 for instruction 𝑖 ∈ 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 (T) do
5 // iterate in reverse order starting from crashing instruction
6 𝑙 ← GetLine(𝑖), 𝑓 ← GetFunction(𝑙) , S′ ← SymbolicVar(𝑙)
7 if S ∩ S′ ≠ ∅ then
8 F ← F ∪ {𝑓 }

9 for function 𝑓 ∈ F do
10 S′ ← ∅
11 for line 𝑙 ∈ Sorted(𝑓 ∩ T) do
12 S′ ←S′ ∪ SymbolicVar(𝑙)
13 if S ⊆ S′ then
14 L ← L ∪ {𝑙}

15 return L, CFC

3.3 Constraint Translation

The next step is to translate the crash-free constraint CFC from the crash location to the identified
fix locations by adapting the constraint to the local context. Using concolic execution to generate
the trace T , CrashRepair is able to collect symbolic expressions for each executed instruction. A
symbolic expression 𝜐 represents the relation between the computed value for each instruction and
the symbolic variables. Leveraging the expressiveness of the symbolic expressions, CrashRepair
can translate the CFC at any location 𝑙 in the trace T , provided all expressions can be adapted to the
local context. Algorithm 2 summarizes the computation of repair constraints where a constraint
CFC is translated to the scope of a fix location 𝑙 in trace T .

For each potential fix location 𝑙𝑓 𝑖𝑥 , CrashRepair attempts to translate the crash-free constraint
CFC to the local context at 𝑙 . The procedure ListExpressions (line 3) generates the list of expressions
listed in program location 𝑙𝑓 𝑖𝑥 by parsing the AST of the program. In order to translate the CFC into
the local context, each expression appearing in the CFC needs to be mapped with a semantically
equivalent expression at program location 𝑙𝑓 𝑖𝑥 .
Using symbolic expressions captured at each location, CrashRepair performs an equivalence

check for each expression appearing in the constraint 𝐶 with program expressions available at
location 𝑙𝑓 𝑖𝑥 . The procedure IsEqivalent (line 6) identifies equivalent expressions using an SMT
solver, e.g., as in our case Z3 [11]. Once all such expressions in CFC can be mapped to a local variable
at location 𝑙𝑓 𝑖𝑥 , a translated CFC denoted as C can be obtained. The procedure Translate (line 10)
takes a set of expressions mapped with the expressions appearing in CFC and replaces the mappings
to obtain a new constraint C.
If it fails to translate the CFC, CrashRepair attempts to synthesize an expression in the search

space of available expressions at location 𝑙𝑓 𝑖𝑥 . For example, program variables a, b at location
𝑙𝑓 𝑖𝑥 may not map directly to an expression in CFC. However, the expression a+b, which does not
appear at the program location 𝑙𝑓 𝑖𝑥 , can be mapped to an expression in CFC. For this purpose,
we enumerate possible expressions using a lightweight grammar in the search space of available

, Vol. 1, No. 1, Article . Publication date: November 2024.

10 Shariffdeen et al.

Algorithm 2: Constraint Translation
Input: constraint CFC, fix locations L
Output: set of fix locations with repair constraints and state values L𝑓 𝑖𝑥 = {(𝑙𝑓 𝑖𝑥 , 𝑐 𝑓 𝑖𝑥)}

1 L𝑓 𝑖𝑥 ← ∅
2 for location 𝑙𝑓 𝑖𝑥 ∈ L do
3 M← ∅, S ← ∅, E ← ListExpressions(𝑙)
4 for expression 𝑒 ∈ CFC do
5 for expression 𝑒0 ∈ E do
6 if IsEquivalent(𝑒 , 𝑒0) then
7 M←M ∪ {𝑒, 𝑒0}
8 if IsTainted(𝑒 , 𝑒0) then
9 S ← S ∪ {𝑒, 𝑒0}

10 C ← Translate(CFC,M)
11 if C = ∅ then
12 C ← Synthesize(CFC, S)
13 if C then
14 L𝑓 𝑖𝑥 ← L𝑓 𝑖𝑥 ∪ {𝑙𝑓 𝑖𝑥 , C}

15 return L𝑓 𝑖𝑥

expressions at location 𝑙𝑓 𝑖𝑥 . For expressions observed at location 𝑙𝑓 𝑖𝑥 we enumerate the possibilities
of [𝑒 +𝐶, 𝑒 ×𝐶, 𝑒/𝐶, 𝑒1 + 𝑒2, 𝑒1 ∗ 𝑒2] where 𝐶 is a constant and 𝑒, 𝑒1, 𝑒2 are expressions. We restrict
the search space to expressions that are tainted by the same sources, which also taints CFC. The
IsTainted procedure (line 8) determines if two expressions are tainted with the same symbolic
source, i.e., if the symbolic expression for both contain the same symbolic sources. The procedure
Synthesize (line 12) uses a list of expressions tainted with the same source to enumerate and find
a combination of expressions that satisfies the equivalence with an expression in CFC.
If a translated constraint can be obtained at 𝑙𝑓 𝑖𝑥 , it will be recorded as a fix location together

with the translated constraint C. Note that the fix locations reported by CrashRepair are among
the locations executed by the exploit input 𝑡𝐹 .

3.4 Patch Generation

Our patch generation algorithm performs AST-level transformations to produce patch candidates
at the source level. Algorithm 3 shows the overview of our transformation strategy. For each
identified fix location 𝑙𝑓 𝑖𝑥 , we explore a set of different program transformations, which are guided
and validated by the obtained repair constraint 𝑐 𝑓 𝑖𝑥 and the collected concrete state 𝑣 𝑓 𝑖𝑥 . 𝑣 𝑓 𝑖𝑥 is
obtained via the procedure StateValues (line 3), which queries the symbolic state mapV to collect
all concrete values observed at a specified program location.
Firstly, we apply transformations to mutate expressions (line 4). We mutate an expression 𝑒 by

replacing variable references and swapping binary operators (e.g., <, >,=, ...). We prune the space of
possible expression replacements by checking whether they satisfy the repair constraint 𝑐 𝑓 𝑖𝑥 using
the provided state 𝑣 𝑓 𝑖𝑥 . In addition, we apply transformations to strengthen existing conditions or
to add extra conditions to the program. If the fix location is a conditional statement, we propose to
enforce the repair constraint at this point (line 9). If the fix location is a non-conditional statement,
we propose several options for altering the control flow depending on 𝑐 𝑓 𝑖𝑥 (line 11). In particular, if
𝑙𝑓 𝑖𝑥 is in a function, we can add a conditional return before executing the current statement. If 𝑙𝑓 𝑖𝑥

, Vol. 1, No. 1, Article . Publication date: November 2024.

Vulnerability Repair via

Concolic Execution and Code Mutations 11

Algorithm 3: Patch Generation
Input: program P, symbolic state mapV , L𝑓 𝑖𝑥 = {(𝑙𝑓 𝑖𝑥 , 𝑐 𝑓 𝑖𝑥)}
Output: a set of patch candidates R

1 R ← ∅
2 for (𝑙𝑓 𝑖𝑥 , 𝑐 𝑓 𝑖𝑥) ∈ L𝑓 𝑖𝑥 do
3 𝑣 𝑓 𝑖𝑥 ← StateValues(𝑙𝑓 𝑖𝑥 ,V)
4 if 𝑙𝑓 𝑖𝑥 has an expression 𝑒 then
5 𝐸1← mutate 𝑒 by replacing variables
6 𝐸2← mutate 𝑒 by swapping binary operators
7 𝐸← validate 𝐸1, 𝐸2 by checking 𝑐 𝑓 𝑖𝑥 using 𝑣 𝑓 𝑖𝑥
8 R ← R ∪ {replace 𝑒 in P[𝑙𝑓 𝑖𝑥] with 𝑒′ ∈ 𝐸}
9 if 𝑙𝑓 𝑖𝑥 is a statement with conditional 𝑐 then
10 R ← R ∪ {replace 𝑐 in P[𝑙𝑓 𝑖𝑥] with 𝑐 ∧ 𝑐 𝑓 𝑖𝑥 }
11 else
12 if 𝑙𝑓 𝑖𝑥 is in a function then
13 R ← R ∪ {add conditional return using 𝑐 𝑓 𝑖𝑥 to P right before 𝑙𝑓 𝑖𝑥 }

14 if 𝑙𝑓 𝑖𝑥 is in a loop then
15 R ← R ∪ {add conditional break using 𝑐 𝑓 𝑖𝑥 to P right before 𝑙𝑓 𝑖𝑥 }
16 R ← R ∪ {add conditional continue using 𝑐 𝑓 𝑖𝑥 to P right before 𝑙𝑓 𝑖𝑥 }

17 R ← R ∪ {add conditional around P[𝑙𝑓 𝑖𝑥] using 𝑐 𝑓 𝑖𝑥 }
18 return R

Table 3. Repair operators implemented in CrashRepair

Operator Description Example

insert-conditional-control-flow inserts a conditional control-flow statement S → S; if(A){exit/break/return}
strengthen-branch-condition add new condition to existing condition if(A) → if (A && B)
weaken-branch-condition remove existing predicate or append new predi-

cate as a disjunction
if(A) → if(A || B), if(A && B) → if(A)

guard-statement adds a guard condition to existing statement S → if(C) S
expression-mutation replace existing expressions by mutating opera-

tors and variables
a + b → a - b, a → a * b

is in a loop, we can add a conditional break or continue. Instead of stopping the overall execution,
we can also perform a conditional skip of the current statement by wrapping it within a conditional
using 𝑐 𝑓 𝑖𝑥 . The resulting program transformations are inspired by search-based program repair
approaches but enriched with the knowledge from the semantic analysis. Table 6 summarizes the
mutations we have implemented in CrashRepair. After generating the patch candidate set, we
prioritize patches based on dependency “distance” (how many hops of dependency edges) from the
crash, where the strongest preference is given to patches closer to the crash location. Generally,
these transformations can be extended/customized for a specific purpose; however, we opted to
build CrashRepair on top of mutations that are common in the APR domain [30, 31].

3.5 Patch Validation

Algorithm 4 shows our patch validation strategy, which is based on fuzzing in the neighborhood of
the exploit to generate a concentrated test suite [41]. We iterate over the generated inputs until a
given timeout is reached. We split the generated inputs into three sets based on how their behavior
differs from that of the provided exploit on the original program:

, Vol. 1, No. 1, Article . Publication date: November 2024.

12 Shariffdeen et al.

𝐼≡ inputs that, when executed, produce the same violation as the provided exploit input.
𝐼× inputs that, when executed, result in a different violation to the provided exploit.
𝐼✓ inputs that, when executed, do not result in a violation (i.e., passing inputs).
We report 𝐼× to the developer as evidence of additional vulnerabilities in the program before

discarding them for the purpose of patch validation since we have no oracle for their expected
behavior. Finally, we discard any inputs in 𝐼✓ that exhibit non-deterministic behavior w.r.t. exit code,
stdout, and stderr. For example, in the case of gnubug-25023 in Coreutils the output includes the
timestamp of the run that leads to non-deterministic results for stdout comparisons. By excluding
non-deterministic cases, we can use exact matching of the original program’s exit code, stdout,
and stderr as an oracle. We then use 𝐼≡ and 𝐼✓ along with the original exploit, 𝑖𝐹 , to validate each
candidate patch using Execute procedure, which takes as input a program and an input. Intuitively,
𝐼≡ helps to ensure that the patch is general and does not overfit to the specifics of a single failing
execution, Moreover, 𝐼✓ helps to prevent the patch from compromising existing functionality or
introducing additional vulnerabilities.

Algorithm 4: PatchValidation
Input: program P, set of patch candidates R, the identified property violations 𝑣 , exploit input 𝑖𝐹
Output: acceptable repair set R′

1 I≡ ← ∅, I× ← ∅, I✓ ← ∅
2 while 𝑖 ← ConcFuzz(P, 𝑖𝐹) ∧ ¬𝑡𝑖𝑚𝑒𝑜𝑢𝑡 do
3 𝑜P ← Execute(P, 𝑖) // observation original execution

4 if no violation in 𝑜P then
5 𝑜P2 ← Execute(P, 𝑖) // repeat execution

6 if 𝑜P ≠ 𝑜P2 then
7 skip // non-deterministic passing input

8 else
9 I✓ ← I✓ ∪ {𝑖}

10 else if 𝑜P = 𝑣 then
11 I≡ ← I≡ ∪ {𝑖} // additional proof of same vulnerability

12 else
13 I× ← I× ∪ {𝑖} // different vulnerability discovered

14 R′ ← ∅
15 foreach 𝑟 ∈ R do
16 foreach 𝑖 ∈ (I≡ ∪ {𝑖𝐹 }) do
17 if Execute(𝑟, 𝑖) = 𝑣 then
18 skip // exploit not fixed

19 foreach 𝑖 ∈ I✓ do
20 if Execute(𝑟, 𝑖) ≠ Execute(P, 𝑖) then
21 skip // bug introduced by patch

22 R′ ← R′ ∪ {𝑟 }

3.6 Ranking

First of all, our ranking prefers patches that have been successfully tested by many inputs during
patch validation. Therefore, we increase the score of patches that show no violation, and those
changes are exercised by the test execution. Secondly, we detect inputs that show a different

, Vol. 1, No. 1, Article . Publication date: November 2024.

Vulnerability Repair via

Concolic Execution and Code Mutations 13

Table 4. Experiment results of CrashRepair on VulnLoc [41] benchmark (BO - Buffer Overflow, DZ - Divide-by-

Zero, NPD - Null Pointer Dereference, IO - Integer Overflow, DTO - Data-type Overflow, UAF - Use-after-Free).

Patch Distance is the computed average across all 30 trials. Patch Rank shows the best-recorded rank among

30 trials. The Patched? column indicates if a plausible repair was generated in any of the trials.

Subject Bug Type Bug ID Fix Localization Constraint Generation Patch Generation Patch Distance
Function Line Correct? Equivalent? Patched? Rank Top-5 Top-10

BinUtils

IO CVE-2017-14745 N/A N/A ✗ ✗ ✗ N/A N/A N/A
BO CVE-2017-15020 1 1 ✗ ✗ ✗ N/A N/A N/A
DZ CVE-2017-15025 1 3 ✓ ✓ ✓ 1 7.8 12.0
BO CVE-2017-6965 N/A N/A ✓ ✓ ✓ N/A 19.8 25.0

CoreUtils

BO gnubug-19784 1 1 ✓ ✓ ✓ 1 1.0 1.0
IO gnubug-25003 1 2 ✓ ✗ ✓ N/A 3.0 3.0
BO gnubug-25023 N/A N/A ✓ ✗ ✓ N/A 1.0 8.0
IO gnubug-26545 N/A N/A ✗ ✗ ✗ N/A N/A N/A

Jasper DZ CVE-2016-8691 N/A N/A ✓ ✓ ✓ 1 3.0 3.0
IO CVE-2016-9557 1 N/A ✓ ✓ ✓ 1 1.0 5.50

LibArchive IO CVE-2016-5844 1 1 ✓ ✓ ✓ 1 1.0 1.0

LibJPEG

BO CVE-2012-2806 1 1 ✓ ✓ ✓ 2 1.0 1.0
NPD CVE-2017-15232 1 1 ✓ ✓ ✓ 1 1.0 1.0
BO CVE-2018-14498 1 1 ✓ ✗ ✗ N/A N/A N/A
BO CVE-2018-19664 N/A N/A ✓ ✗ ✗ N/A N/A N/A

LibMING
BO CVE-2016-9264 1 24 ✓ ✓ ✓ 1 1.0 1.0
UAF CVE-2018-8806 1 1 ✓ ✓ ✓ 2 1.0 1.0
UAF CVE-2018-8964 1 1 ✓ ✓ ✓ 1 1.0 1.0

LibTIFF

DZ bugzilla-2611 N/A N/A ✓ ✗ ✓ N/A 3.0 3.0
BO bugzilla-2633 1 N/A ✗ ✗ ✓ N/A 1.0 1.0
BO CVE-2016-10092 3 4 ✓ ✗ ✓ 27 175.0 175.0
BO CVE-2016-10094 2 N/A ✓ ✗ ✓ N/A N/A N/A
BO CVE-2016-10272 2 2 ✓ ✗ ✓ 27 175.0 175.0
BO CVE-2016-3186 1 3 ✓ ✓ ✓ 1 2.0 2.0
BO CVE-2016-5314 2 6 ✓ ✓ ✓ N/A 314.40 336.33
IO CVE-2016-5321 1 2 ✓ ✓ ✓ 2 1.0 1.0
BO CVE-2016-9273 N/A N/A ✗ ✗ ✗ N/A N/A N/A
BO CVE-2016-9532 1 1 ✓ ✓ ✓ 1 1.0 1.0
BO CVE-2017-5225 1 N/A ✓ ✗ ✓ N/A 1.0 1.2
DZ CVE-2017-7595 1 15 ✓ ✓ ✓ 8 3.0 3.8
DTO CVE-2017-7599 1 1 ✓ ✓ ✓ N/A 1.0 1.40
DTO CVE-2017-7600 1 N/A ✓ ✓ ✓ N/A 1.0 1.0
IO CVE-2017-7601 1 N/A ✓ ✗ ✓ N/A 3.0 3.0

LibXML2

BO CVE-2012-5134 1 1 ✓ ✓ ✓ 1 1.0 41.80
BO CVE-2016-1838 1 1 ✓ ✓ ✓ 1 5.80 9.90
BO CVE-2016-1839 3 13 ✓ ✓ ✓ N/A 4.0 6.30
NPD CVE-2017-5969 1 1 ✓ ✓ ✓ 1 1.0 57.19

Potrace BO CVE-2013-7437 3 6 ✓ ✓ ✓ 3 25.0 25.0

ZzipLib
BO CVE-2017-5974 N/A N/A ✗ ✗ ✗ N/A N/A N/A
BO CVE-2017-5975 1 1 ✓ ✓ ✓ 2 1.0 5.64
BO CVE-2017-5976 1 1 ✗ ✗ ✓ N/A 1.0 1.10

Total/Average 41 32 26 34 24 33 21 23.12 27.76

property violation in the patched program than in the original program. Such behavior does not
necessarily mean a malicious side-effect by the repair but could also reveal a previously masked
vulnerability. Nevertheless, we prefer patches that do not show such violations anymore, and hence,
we decrease the score in such cases. Finally, we sort patches with the same final score by their
dependency "distance" (how many hops of dependency edges) from the crash. We de-prioritize
patches very close to the crash (such as patches at the crash location simply disabling the crash).

4 EVALUATION

In our evaluation, we investigate the effectiveness of our approach in fix localization, constraint
translation, and patch generation. In particular, we explore the accuracy of the generated fix
locations and the contributions of the various mutation strategies of CrashRepair. We also evaluate

, Vol. 1, No. 1, Article . Publication date: November 2024.

14 Shariffdeen et al.

the patch quality of CrashRepair compared to the state of the art. Therefore, we ask the following
research questions:
RQ1 How accurate are the generated fix locations and the corresponding constraints?
RQ2 Can CrashRepair generate correct fixes for security vulnerabilities?
RQ3 How successful are the different repair operators of CrashRepair?
RQ4 How does CrashRepair compare to the state of the art in security vulnerability repair?
With RQ1, we investigate whether our fix locations and constraints generally help to fix the

given vulnerability. RQ2 investigates if the generated constraint can be used to successfully obtain
a correct patch. In RQ3, we explore the contributions of our repair operators to the generation of
correct patches. Finally, in RQ4 we compare our performance against state-of-the-art vulnerability
repair techniques.

4.1 Implementation Details

The majority of our CrashRepair is implemented in C++ and Python. The localization and con-
straint computation is implemented by extending KLEE [6] for concolic execution. The patch
generation uses source-level code mutations, and our fuzzer is a modified version of ConcFuzz by
VulnLoc [41].

4.2 Experimental Setup

Tools. Multiple APR approaches [17, 21, 23, 25, 27, 31, 34] have been proposed to localize and repair
various defect classes. Senx [21], ExtractFix [17], CPR [39], and VulnFix [49] are the most recent
works on tackling automated repair of security vulnerabilities in C projects. These approaches have
been shown to outperform previous techniques [31, 34] and, therefore, we compare CrashRepair
against them. Among the baseline tools only VulnFix has non-deterministic behavior due to the use
of fuzzing. Due to the non-deterministic components in both CrashRepair and VulnFix, results for
these two tools are reported using 30 repetitions for each tool. All our experiments are executed
using the program repair framework Cerberus [38].

Dataset. Our evaluation dataset consists of bugs from the VulnLoc [41] benchmark, which provides
a diverse set of 43 vulnerabilities related to buffer overflows, divide-by-zero, integer overflows, null
pointer dereferences, heap use-after-free, and data-type overflows. Out of the 43 vulnerabilities
in our dataset, two vulnerabilities (i.e., ffmpeg subject) cannot be reproduced in our environment
(ubuntu-18.04 and gcc-7.5/clang-10) because they are incompatible with the experimental system
or libraries. Therefore, we use the remaining 41 vulnerabilities in our evaluation.

We conducted all our experiments with a timeout of 1 hour, which was reported as a realistic and
tolerable timeout for developers [35]. All of our experiments are performed on a 40-core 2.60GHz
64GB RAM Intel Xeon machine, Ubuntu 18.04.

4.3 Fix Localization and Repair Constraints

To answer RQ1, we evaluate the effectiveness of CrashRepair in the following two aspects: 1)
finding fix locations and 2) translating CFC to the fix locations. Note that security vulnerabilities are
reported at most with a single failing test case, which does not include a developer-provided test
suite. Hence, using existing fault localization techniques would be unable to identify the correct fix
location due to the unavailability of passing test cases. Our proposed fix localization (ref Algorithm
1) based on concolic execution uses data dependency to identify potential fix locations.

Table 4 shows the overall results of CrashRepair. Column “Fix Localization” depicts the average
rank of the developer location identified by CrashRepair in terms of the fixed function and the
fixed source line. Sub-column “Function” indicates the average rank of the developer fixed function

, Vol. 1, No. 1, Article . Publication date: November 2024.

Vulnerability Repair via

Concolic Execution and Code Mutations 15

among the functions identified as potential fix locations by CrashRepair. Similarly, the sub-column
“Line” indicates the average rank of the developer fixed line among the lines identified as potential
fix locations by CrashRepair. Instances for which CrashRepair cannot identify the developer
fixed function or source line is marked as ‘N/A’.

CrashRepair can correctly place the developer fix location with respect to the exact line number
in the top-1 ranking for 15 instances and in the top-5 ranking for 21 instances. We note that a
precise comparison based on line number is not an accurate measure since a patch can be inserted
in the near neighborhood; hence, we also report the fix function. CrashRepair can correctly place
the developer fixed function in the top-1 ranking for 26 instances and in the top-3 ranking for
32 instances. CrashRepair was unable to determine a fix location for 8 of the bugs due to being
unable to determine a location in the trace of the failing test case where all symbolic variables
appearing in the constraint CFC are observed in a single function.

static int jpc_siz_getparms(jpc_ms_t *ms, pc_cstate_t *cstate , jas_stream_t *in)
{

+ if (siz->comps[i].hsamp == 0 || siz->comps[i].hsamp > 255) {
+ jas_eprintf("invalid XRsiz value %d \n", siz–>comps[i].hsamp);
+ jas_free(siz–>comps);
+ return -1;
+ }

}

Listing 3. Code Snippet of the developer patch for the vulnerability CVE-2016-8691 in Jasper project.

We manually investigated the bugs for which CrashRepair did not determine the correct fix
function in the top-3 ranking. Listing 3 depicts one such example where the developer provided
a patch in jpc_siz_getparms function. CVE-2016-8691 is a program crash caused by a division by
zero error in Jasper program. The developer patch utilizes the variable siz->comps[i].hsamp, which
was not observed at the function jpc_siz_getparms, during the execution of the buggy version
of the program. The localization in CrashRepair is restricted to the program variables observed
in the execution trace. This prevents our localization algorithm from correctly identifying the
developer’s fix location. Extending the analysis to all reachable live variables can address this
limitation. However, it would decrease the performance of the analysis due to the explosion of all
possible variables at each location.
Out of 41 instances, CrashRepair can generate a correct constraint for 34 instances, where

24 of them are semantically equivalent to the developer fix. The results show that our constraint
translation can effectively compute a crash-free constraint, especially for integer overflow, divide-
by-zero, and developer assertions. Localizing crash-free constraints generated for buffer overflow
vulnerabilities remains challenging due to missing fix ingredients at the fix location, such as
buffer_size and buffer_base.

Figure 4 illustrates a scenario where the constraint generated by CrashRepair is different from
the developer written patch. CVE-2017-7601 is a shift overflow error observed in the LibTIFF library.
Figure 4b shows a simplified version of the patch generated by CrashRepair for the error. The
CFC generated for this vulnerability constraints the second operand (i.e., td->td_bitspersample of
the shift operator) to be within the minimum and maximum allowed for a valid shift operation.
However, the developer patch as shown in Figure 4a has a stronger constraint restricting the variable
td->td_bitspersample to be less than 16, which is derived from the file format specification of the
input. Although the constraint generated by CrashRepair correctly remediates the vulnerability,
it is not equivalent to the developer patch constraint td->td_bitspersample, which is based on
additional program semantics.

, Vol. 1, No. 1, Article . Publication date: November 2024.

16 Shariffdeen et al.

static int JPEGSetupEncode(TIFF* tif)
{

+ if(td–>td_bitspersample > 16)
+ return 0;)

float *ref;
if (! TIFFGetField(tif , TIFFTAG , &ref)) {

float refbw [6];
shift overflow below!
long top = 1L << td->td_bitspersample;

(a) Simplified patch written by developer

static int JPEGSetupEncode(TIFF* tif)
{

+ if(td–>td_bitspersample > 32 ||
+ td–>td_bitspersample < 0)
+ return 0;)

float *ref;
if (! TIFFGetField(tif , TIFFTAG , &ref)) {

float refbw [6];
shift overflow below!
long top = 1L << td->td_bitspersample;

(b) Simplified patch generated by CrashRepair

Fig. 4. Comparison of the repair constraints for the vulnerability CVE-2017-7601 in LibTIFF

RQ1 – Fix Localization and Constraint Generation: CrashRepair can correctly place the
developer fixed line in the top-5 ranking for 21 instances and the developer fixed function in
the top-3 ranking for 32 instances. For each localized function, CrashRepair is able to generate
a crash-free constraint for 34 instances, out of which 24 are semantically equivalent to the
constraint employed in the developer fix.

4.4 Fixing Security Vulnerabilities

Using semantic analysis CrashRepair identifies fix locations and generates a repair constraint
at each fix location. Once a repair constraint is generated, the program is modified to satisfy the
constraint. Guided by the semantic analysis, CrashRepair employs a search-based approach to
find a patch that satisfies the repair constraint (ref Algorithm 3). Table 4 shows the overall results
of CrashRepair. Column “Patch Generation” depicts the quantitative and qualitative analysis of
the patches generated by CrashRepair. The column “Patched?” reports whether a plausible patch
that passes the failing test case without additional side effects was generated in any single trial.
Sub column “Rank” captures the highest ranking of the developer patch among the list of plausible
patches generated by CrashRepair. The column is marked as ‘N/A’ if the developer patch is not
found. Column “Patch Distance” depicts the average patch distance for Top-5 and Top-10 patches
generated by CrashRepair. The patch distance is computed as the number of unique lines in the
trace of the exploit between the crash location and the fix location.

A patch is determined plausible if it a) successfully mitigates the identified security vulnerability,
b) matches the expected return code of the program from the developer patch, and c) does not
introduce new vulnerabilities with respect to the sanitizer used. We note that security vulnerabilities
can be fixed by simply modifying an existing statement. Since the oracle is a single failing test case,
it is difficult to identify over-fitting patches. Hence, as a preliminary step, we only generate patches
that strictly meet the above criteria.

Figure 5 depicts the distribution of the best rankings for the correct patch, the correct fix location,
and the correct fix line. The violin plot in Figure 5 captures the distribution and the frequency for
each ranking. The majority of the ranking can be seen within the top-5 for each category. Except
for the Correct Fix Function, both the correct patch and correct fix line reach beyond the top-5.
More specifically in most instances where a correct patch is generated, it is placed at the top-3.
This reflects the ability of CrashRepair to generate the correct patch and to rank it in the highest
order. Using the generated repair constraint CrashRepair can generate a plausible patch for 33
subjects, out of which 21 of them are equivalent to the developer fix. In addition, the equivalent

, Vol. 1, No. 1, Article . Publication date: November 2024.

Vulnerability Repair via

Concolic Execution and Code Mutations 17

Fig. 5. Distribution of ranking for the correct patch, the correct fix location, and the correct fix line.

developer patch is placed in the top-1 ranking and top-3 ranking for 13 subjects and 18 subjects
respectively (see column "Rank") in Table 4.

CrashRepair can generate correct patches earlier in the execution trace with patches having a
patch distance greater than 10. The average patch distance for 33 instances where CrashRepair
generated a plausible patch is 23.12 and 27.76 for top-5 and top-10 ranked patches respectively. The
largest patch distance is observed CVE-2016-5314 with 314.40 lines earlier in the execution trace.
The distance is computed in terms of unique source lines in the execution trace. This indicates that
CrashRepair can generate patches addressing the root cause of the error, rather than avoiding the
crash at the crash location.
Although CrashRepair generates a plausible patch for 33 subjects, for 12 subjects it does not

generate a semantically equivalent patch to the developer fix. Manually investigating, we found
that the developers used additional domain-specific knowledge to fix the vulnerability. Figure 6
depicts the comparison between a correct patch generated by CrashRepair and the patch written
by the developer. Bugzilla-2611 is a divide-by-zero error observed in the LibTIFF library. Figure 6b
shows the patch generated by CrashRepair for the error, which checks if the divisor of the modulo
division operation is non-zero. However, the developer patch for the division by zero error is to
check if a specific field has been set (i.e., sp->decoder_ok). Figure 6a shows a simplified version of
the developer patch, which adds an extra field to disable the computation that would trigger the
division by zero error. Although the two patches are not equivalent, the patch shown in Figure 6b
prevents the division by zero error and successfully fixes the vulnerability.
In addition, we investigate the subjects for which CrashRepair was not able to generate a

plausible patch. Due to limitations in the memory violation detection in KLEE, CrashRepair is not

static int OJPEGDecode (TIFF* tif , uint8*
buf , tmsize_t cc, uint16 s)

{

+ if(!sp–>decoder_ok)
+ return 0;)

(a) Simplified patch written by developer

static int OJPEGDecodeRaw(TIFF* tif , uint8
* buf , tmsize_t cc)

{
+ if (cc%sp–>bytes_per_line!=0)
+ if (sp–>bytes_per_line!=0
+ cc%sp–>bytes_per_line!=0))

(b) Simplified patch generated by CrashRepair

Fig. 6. Comparison of the repair constraints for the vulnerability bugzilla-2611 in LibTIFF

, Vol. 1, No. 1, Article . Publication date: November 2024.

18 Shariffdeen et al.

Table 5. Statistical tests for CrashRepair over 30 repetitions.

Subject Bug Type Bug ID Input Fuzzing Patch Generation
Failing Passing Patched? Plausible Rank

BinUtils

IO CVE-2017-14745 5.47 ± 1.98 0.5 ± 1.53 0 0 ± 0 NA
BO CVE-2017-15020 6.73 ± 0.58 0 ± 0 0 0 ± 0 NA
DZ CVE-2017-15025 15.43 ± 2.62 0 ± 0 30 15.4 ± 0.67 1 ± 0
BO CVE-2017-6965 5.97 ± 1.07 0 ± 0 29 7.73 ± 1.46 NA

CoreUtils

BO gnubug-19784 197.47 ± 8.78 0 ± 0 30 3 ± 0 1 ± 0
IO gnubug-25003 14 ± 0 0 ± 0 30 3 ± 0 NA
BO gnubug-25023 23.03 ± 42.47 0 ± 0 30 18 ± 0 NA
IO gnubug-26545 0 ± 0 0 ± 0 0 NA NA

Jasper DZ CVE-2016-8691 19.8 ± 12.76 0 ± 0 30 40 ± 0 1 ± 0
IO CVE-2016-9557 143.87 ± 34.43 0 ± 0 30 40 ± 0 1 ± 0

LibArchive IO CVE-2016-5844 1 ± 0 0 ± 0 30 6 ± 0 1 ± 0

LibJPEG

BO CVE-2012-2806 5.93 ± 2.24 0 ± 0 30 40 ± 0 2 ± 0
NPD CVE-2017-15232 127.57 ± 72.77 0 ± 0 28 5.6 ± 1.52 1 ± 0
BO CVE-2018-14498 0.73 ± 1.55 0 ± 0 0 0 ± 0 NA
BO CVE-2018-19664 106.03 ± 74.53 0 ± 0 0 0 ± 0 NA

LibMING
BO CVE-2016-9264 3.2 ± 3.09 2.7 ± 3.1 23 1.53 ± 0.86 1 ± 0
UAF CVE-2018-8806 5.13 ± 2.49 0.8 ± 1.67 30 5.47 ± 1.38 2 ± 0
UAF CVE-2018-8964 4.3 ± 2.58 1.67 ± 2.51 29 1.93 ± 0.37 1 ± 0

LibTIFF

DZ bugzilla-2611 19.63 ± 10.9 0 ± 0 30 3 ± 0 NA
BO bugzilla-2633 102.23 ± 84.56 0.23 ± 0.77 26 34.67 ± 13.83 NA
BO CVE-2016-10092 86.87 ± 91.52 0 ± 0 30 40 ± 0 27 ± 0
BO CVE-2016-10094 137.2 ± 69.14 0 ± 0 0 0 ± 0 NA
BO CVE-2016-10272 98 ± 85.57 0 ± 0 30 40 ± 0 27 ± 0
BO CVE-2016-3186 180.43 ± 27.07 0 ± 0 1 0.2 ± 1.1 1 ± 0
BO CVE-2016-5314 9.9 ± 18.43 0 ± 0 30 9 ± 0 NA
IO CVE-2016-5321 88.53 ± 95.45 0 ± 0 30 40 ± 0 2 ± 0
BO CVE-2016-9273 39.5 ± 59.55 0 ± 0 0 0 ± 0 NA
BO CVE-2016-9532 170.93 ± 22.08 0 ± 0 30 3 ± 0 1 ± 0
BO CVE-2017-5225 96.93 ± 81.22 0 ± 0 30 18 ± 0 NA
DZ CVE-2017-7595 28.97 ± 15.65 0 ± 0 30 40 ± 0 8 ± 0
DTO CVE-2017-7599 76.66 ± 49.16 0 ± 0 29 40 ± 0 NA
DTO CVE-2017-7600 62.37 ± 41.11 0 ± 0 30 40 ± 0 NA
IO CVE-2017-7601 37.33 ± 62.58 0 ± 0 30 12 ± 0 NA

LibXML2

BO CVE-2012-5134 169.96 ± 36.26 5.57 ± 13.17 28 40 ± 0 1 ± 0
BO CVE-2016-1838 81.1 ± 30.57 0 ± 0 30 15 ± 0 1 ± 0
BO CVE-2016-1839 0 ± 0 29.43 ± 6.81 30 15 ± 0 NA
NPD CVE-2017-5969 105.07 ± 79.94 56.13 ± 72.55 30 22.3 ± 6.9 1 ± 0

Potrace BO CVE-2013-7437 4.03 ± 2.33 0 ± 0 30 40 ± 0 3 ± 0

ZzipLib
BO CVE-2017-5974 55.37 ± 86.37 1.97 ± 3.6 0 0 ± 0 NA
BO CVE-2017-5975 36.3 ± 75.33 0.03 ± 0.18 30 38 ± 5.48 2 ± 0
BO CVE-2017-5976 13.1 ± 49.86 13.33 ± 36.37 30 40 ± 0 NA

able to generate a correct repair constraint for two subjects: CVE-2017-14745 and gnubug-26545.
Improving the capabilities of KLEE could lead to better performance of CrashRepair. In addition,
we observe that for some instances CrashRepair removes the correct developer patch in the
validation step. Although CrashRepair can correctly generate the developer fix as a candidate
patch, the differential testing removes the correct patch due to behavioral changes compared to the
original program. Improving the differential test oracle could mitigate such instances, which we
leave as future work to investigate.
Accounting for the non-deterministic behavior of CrashRepair due to the differential fuzzing,

we repeat our evaluation of CrashRepair for 30 independent trials following the guidelines from

, Vol. 1, No. 1, Article . Publication date: November 2024.

Vulnerability Repair via

Concolic Execution and Code Mutations 19

Table 6. Relative effectiveness of CrashRepair’s operators.

Operator Candidates Subjects
Total Plausible Plausible

insert-conditional-control-flow 83880 15120 (18.03%) 25
strengthen-branch-condition 17352 3086 (14.57%) 12
guard-statement 9588 1290 (13.45%) 10
weaken-branch-condition 8676 959 (11.05%) 9
expression-mutation 8910 960 (10.77%) 2

Arcuri et al. [4]. For each bug in our dataset, we run our tool CrashRepair for 30 trials where each
run is provided with a unique random seed. Table 5 summarizes the results of the multiple trials.
Column “Input Fuzzing” depicts the distribution of the failing and passing test cases generated
for each bug in the format of 𝑥 ± 𝑦, where 𝑥 is the mean of the distribution and 𝑦 is the standard
deviation. Similarly, sub-columns “Plausible” and “Rank” represent the distribution for the number
of plausible patches and the rank of the developer patch for each bug. Sub-column “Patched?”
indicates the number of trials that produce at least one plausible patch.
According to the results in Table 5 the output of the concentrated fuzzer varies significantly,

as observed with larger standard deviations for both passing and failing test input generation.
For 25 vulnerabilities CrashRepair consistently generated a plausible patch, out of which for 16
instances the correct patch was consistently generated and ranked in the same order. In 4 subjects
(CVE-2017-15232, CVE-2016-9264, CVE-2018-8806, and CVE-2018-89645), a plausible patch was
not generated in some trials while in CVE-2016-3186 only a single trial generated a plausible
patch. Investigating further, we identified that differential testing removes the correct patch due
to imprecise test oracles and possible flaky behavior. Improving the test oracle and incorporating
flakiness suppression mechanisms could yield better results; we leave such improvements as future
work.

RQ2 – Patch Generation: CrashRepair is able to generate a patch equivalent to the developer
fix for 21 instances. In addition, the developer fix is placed in the top-1 ranking and top-10
ranking for 13 and 19 instances, respectively.

4.5 Repair Operators

Table 6 presents an overview of the relative effectiveness of each of CrashRepair’s repair
operators. In terms of the number of scenarios that are plausibly fixed by an operator, we see that
insert conditional-control-flow is the best-performing operator (25 of 41 scenarios). However, no
single operator can repair all scenarios.
Looking at the total number of candidate patches produced by each operator, we see that

insert conditional control flow produces an order of magnitude more candidates than any other
operator. The primary reason for the large number of patches lies in the implementation of the
insert conditional return sub operator: The repair module will generate a candidate patch for each
type-compatible variable that is in scope at a given fix location.

Figure 7 depicts an example for which CrashRepair was able to generate the CFC correctly but
failed to generate the developer patch. The vulnerability gnubug-19784 in CoreUtils is an out-of-
bound memory access caused by an incremented index. Analysis of the CrashRepair identifies the
out-of-bound access and generates the constraint (see Figure 7b) for bounds check of the index.

, Vol. 1, No. 1, Article . Publication date: November 2024.

20 Shariffdeen et al.

The developer patch is shown in Figure 7a, where the bounds check and the index is swapped. In
our current implementation of CrashRepair we do not include a repair operator for swapping
expressions. However, the transformations for the patch generation can be extended to support
additional repair operators.

int main (int argc , char **argv) {
...
+ while (i < size && sieve[++i] == 0)
+ while (++i < size && sieve[i] == 0)

(a) Simplified patch written by developer

int main (int argc , char **argv) {
...

CFC: i + 1 < size
while (i < size && sieve [++i] == 0)

(b) CFC generated by CrashRepair

Fig. 7. GNUBUG-19784 in CoreUtils, for which CrashRepair generated the correct constraint but failed to

generate the correct patch.

In terms of the yield of each operator (i.e., the percentage of its patches that are plausible), insert
conditional control flow is the best performing operator (18.03%) whereas expression mutation is the
worst performing operator (10.77%).

RQ3 – Repair Operators: Each of CrashRepair’s repair operators contributes to its overall
performance.

4.6 Comparison with the State of the Art

We compare our results with existing state-of-the-art techniques for vulnerability repair. For each
repair approach, it shows the number of plausible patches generated for each of the 41 subjects in
the VulnLoc benchmark. Table 7 shows the qualitative and quantitative comparisons with each
approach. Column “Plausible Patch” indicates the number of bugs a tool was able to generate a
plausible patch. This comparison provides a quantitative measure of the ability of each technique
to find a working patch. Column “Correct Patch” indicates the number of bugs the tool finds
a developer-equivalent patch for. This comparison provides a qualitative measure of the tools’
capabilities to generate a correct patch. For VulnFix and CrashRepair we report the best result out
of 30 trials for each bug. The presented results show CrashRepair can produce plausible patches
for 33 subjects, while Senx only for 12, and ExtractFix only for 12. VulnFix and CPR are able to
generate a plausible patch for 17 and 35 instances, respectively. In terms of plausible patches, CPR
has the highest count while CrashRepair has the second highest with a significant margin (i.e., 16
additional) over the rest.

Figure 8 shows the distribution of unique bugs each repair tool was able to generate a plausible
and correct patch. Figure 8a depicts the breakdown of bugs for which each repair tool was able to
generate a plausible patch. Only 1 bug was fixed by all repair tools while CPR and CrashRepair
have 5 and 4 uniquely fixed bugs respectively. Similarly, Figure 8b captures the unique bugs each
tool was able to correctly fix, correctness is measured in terms of semantic equivalence to the
developer patch. CPR and CrashRepair has the most number of correctly fixed unique bugs with
10 and 5 respectively. We note that both CPR and VulnFix assume perfect fix localization, which
requires additional input, such as the developer fix location. Such additional information helps to
restrict the search space for both finding a fix location and generating a correct patch. In contrast,
CrashRepair automatically determines the correct fix location and generates a correct patch using
only the single failing test case.
For patch correctness evaluation, we only considered the top-10 ranked patches of each tool.

Although having the correct patch in the search space is important, placing the patch in the

, Vol. 1, No. 1, Article . Publication date: November 2024.

Vulnerability Repair via

Concolic Execution and Code Mutations 21

Table 7. Comparison with state-of-the-art tools on VulnLoc benchmark.

Subject #Vulns Plausible Patch Correct Patch
CrashRepair Senx ExtractFix VulnFix CPR CrashRepair Senx ExtractFix VulnFix CPR

BinUtils 4 2 0 1 2 3 1 0 1 1 0
CoreUtils 4 3 0 2 3 4 1 0 1 0 0
Jasper 2 2 0 0 1 2 2 0 0 0 1
LibArchive 1 1 1 0 0 1 1 0 0 0 0
LibJPEG 4 2 1 1 2 3 2 0 1 2 0
LibMING 3 3 1 0 1 1 3 0 0 1 0
LibTIFF 15 13 8 7 4 14 4 3 2 1 7
LibXML2 4 4 1 1 3 4 3 0 0 3 1
Potrace 1 1 0 0 0 1 1 0 0 0 0
ZzipLib 3 2 0 0 1 2 1 0 0 1 0
Overall 41 33 12 12 17 35 19 3 5 9 9

top rank is similarly important as developers would only examine a few patches [35]. Using the
top-10 plausible patches, we determined for how many bugs the tool can generate a developer
equivalent patch. In terms of correct patches, CrashRepair has the highest count with 19 subjects
generating a correct patch in the top-10 ranking. Senx and ExtractFix generate 3 and 5 correct
patches, respectively, while VulnFix and CPR only generate a correct patch for 9 subjects. In
terms of qualitative measures, CrashRepair outperforms existing techniques by generating a
developer-equivalent patch for 19 instances.

RQ4 – Comparative Performance: CrashRepair outperforms existing state-of-the-art tech-
niques in vulnerability repair by generating high-quality patches in the top-10 ranking for 19
subjects in VulnLoc benchmark.

(a) Plausible Patches (b) Correct Patches

Fig. 8. (a) Venn diagram of bugs for which repair tools found a plausible patch. (b) Venn diagram of bugs for

which repair tools found a correct patch in the top 10.

, Vol. 1, No. 1, Article . Publication date: November 2024.

22 Shariffdeen et al.

4.7 Threats to Validity

External Validity. To reduce the risk of an unrepresentative evaluation, we evaluate CrashRepair
on the established VulnLoc dataset [41], which holds 43 CVEs from 11 real-world applications. It
includes a diverse set of vulnerabilities, including buffer overflows, divide-by-zero, integer overflows,
null pointer dereferences, use-after-free, and data-type overflows.

Internal Validity. The main threat to internal validity is the correctness of our implementation
because our constraint generation is based on a single trace execution, which holds true only for
a single path in the program. Although we use a single failing test case by employing concolic
execution, we are able to generalize the constraint to the extent of all possible values along the
trace of the failing test case. Additionally, face validity showed that the results are consistent
with the expected outcome. Additionally, we have chosen one hour as repair timeout based on
recent studies [35], which was reported as a realistic and tolerable timeout. It is possible that
other timeouts can lead to other observations. Moreover, all tools have been executed with their
default run configurations; e.g., fine-tuning parameters can lead to other results. The concentrated
fuzzer [41] used in CrashRepair can potentially generate tests that introduce flaky behavior.
The experiment subjects in our evaluation are file processing software, which does not depend
on previous test executions. Hence, the impact of flaky tests is minimal. Incorporating flakiness
suppression mechanisms ensures that generated tests are non-flaky. However, this is outside of
the scope of this work, as the fuzzing integration is only a post-processing step and not the main
contribution of this work.

Construct Validity. To determine the correctness of the generated repairs, we manually compared
them with the developer fixes. To alleviate this threat, three of the co-authors independently
reviewed the patches manually to verify the correctness of the ratings.

5 DISCUSSION

5.1 Vulnerability Detection in KLEE

KLEE [6] symbolic execution engine is capable of executing each instruction in a binary program
and symbolically analyze the result of each instruction. KLEE provides in-built support to detect
vulnerabilities in the class of memory errors. CrashRepair uses an extended version of KLEE that
also detects undefined behavior errors such as Integer Overflow, Shift Overflow etc. Although KLEE
can be easily extended to detect additional types of vulnerabilities, it does not support executing
binary instrumented with an AddressSanitizer (ASAN)1 and has limited support for floating point
instructions. Hence, some of the errors detected by ASAN will not be detected by KLEE. In our
experiments, we could not detect the vulnerability reported in CoreUtils gnubug-26545 using KLEE.
The error in gnubug-26545 is due to an overlapping memory region using𝑚𝑒𝑚𝑐𝑝𝑦 LibC function.
ASAN checks the parameters for the memcpy function, however KLEE does not implement this
check. KLEE can be extended to improve its detection capabilities by improving the in-built security
properties and supporting out-of-the-box sanitizers. Such extensions are beyond the scope of this
work, and will be explored in future work.

5.2 Repair Operators in CrashRepair

The patch generation of CrashRepair constructs a search space of candidate patches using ob-
served program variables, expressions, and C operators at the localized program location. Our
implementation closely focuses on prior work to identify suitable repair operators, specifically
Angelix [31] and F1X [30]. The complete set of operators is listed in Table 6, which does not cover
1https://github.com/klee/klee/issues/1254

, Vol. 1, No. 1, Article . Publication date: November 2024.

Vulnerability Repair via

Concolic Execution and Code Mutations 23

all possible transformations that can be applied. For our implementation, we restricted the repair
operators that are commonly used and observed in prior work. However, our implementation can
be extended to support additional repair operators to generate more specialized program transfor-
mations. The vulnerability gnubug-19784 is an example where CrashRepair fails to generate the
developer patch despite generating the correct constraint as discussed in Section 4.5. Extending our
transformations to include additional repair operators such as Swapping can produce the developer
patch for gnubug-19784.

6 RELATEDWORK

The three stages of handling security vulnerabilities, i.e., detection [32, 48], fix localization [22, 41, 50],
and repair generation [17, 21], have been mostly handled separately in the past. CrashRepair
combines all of them in one workflow.

6.1 Security Vulnerability Detection

Fuzzing [32] has generated enormous interest in recent decades for the detection of security
vulnerabilities. Especially greybox fuzzing is largely applied in industry [5, 13], e.g., to detect
program crashes, assertion failures, and memory errors, which all might be exploited by a potential
attacker. Static analysis is another popular technique to detect security vulnerabilities in practice [18,
36]. For instance, Facebook’s Infer [7] is a static analyzer to detect memory safety issues based on
separation logic. CRed [48] performs a pointer-analysis-based static analysis to detected use-after-
free (UAF) errors in large programs. Leopard [14] searches for vulnerable functions by ranking
them with so-called vulnerability metrics, which are provided as input to their technique.

6.2 Fault Localization for Vulnerabilities

Wong et al. [45] survey the existing fault localization techniques and conclude that Spectrum-based
Fault Localization (SBFL) is the most investigated fault localization technique. SBFL techniques
rely on the existence of many passing and failing tests, while for security vulnerabilities, we
may have only one exploit. Therefore, Shen et al. [41] propose VulnLoc, which essentially uses
fuzzing to generate a condensed test suite for the neighborhood of the exploit. Küçük et al. [22]
focus on the confounding bias of SBFL, where the correlation may be mistaken as causation and
produce fault localization based on statistical causal inference. Following a different direction, Gao
et al. [17] propose in their work on ExtractFix the usage of a control/data dependency analysis
to identify potential fix locations. With regard to fault/fix localization, CrashRepair is most
related to ExtractFix, with which we performed an experimental comparison in Section 4. Overall,
CrashRepair does not rely on the generation of test inputs but needs a dependency analysis at the
level of LLVM IR.

6.3 Program Repair related to Vulnerabilities

In the context of security vulnerability repair, one can distinguish techniques that are generally
applicable and techniques that are tailored for specific bug types like memory errors or integer
and buffer overflows. The most related works are ExtractFix [17] and Senx [21]. ExtractFix uses
sanitizers to detect violations followed by a weakest precondition computation to propagate the
repair constraint from the sanitizer to potential fix locations. Repairs are synthesized with the goal
of satisfying the repair constraint. Senx requires a human-provided property to identify violations
during symbolic execution. It then extracts a predicate based on the available variables in scope
to enforce the safety property at a suitable fix location. In another recent work [39], the authors
propose concolic program repair (CPR) for the efficient co-exploration of input and patch space to
achieve the repair of security vulnerabilities. CPR assumes the fix location as input and requires

, Vol. 1, No. 1, Article . Publication date: November 2024.

24 Shariffdeen et al.

a user-provided specification to reason about additionally generated inputs. VulnFix [49] is a
fuzzing-based technique to infer likely invariants that can act as repair constraints. Provided the fix
location, VulnFix performs intensive mutations of the program state at this location. We compared
CrashRepair to all these four techniques in our evaluation (see Section 4).

More recently, learning based techniques have been proposed to fix security vulnerabilities [8, 15,
46]. VRepair [8], is an automated vulnerability repair approach that uses Transformer-based Neural
Machine Translation (NMT) to fix security vulnerabilities. VulRepair [15] propose an transformer
based encoder-decoder approach by fine-tuning a CodeT5 model to repair C vulnerabilities. These
techniques also assumes perfect fault localization and the evaluation is based on sequence accuracy
as compared to more practical APR setting of verifying the vulnerability remediation by executing
the failing test-case. More recent study [46] using learning based repair tools and large language
model based tools on Java vulnerabilities shows that, this line of work can only fix very few
vulnerabilities. Additionally, these learning based techniques require larger vulnerability repair
training datasets, which is more difficult to obtain as vulnerability fixes are scarce.

6.4 Repair of Memory Errors

Multiple approaches have been proposed to repair vulnerabilities explicitly related to memory
errors [16, 19, 25, 44, 47]. For example, one can leverage static analyzers like Infer to identify
memory-related vulnerabilities [19, 44]. Footpatch [44] uses separation logic-based reasoning to
generate patches guaranteed to satisfy specific heap properties. However, their work is prone
to introduce new errors, such as double-free as a side-effect [19]. SAVER [19] uses a program
verification technique and produces patches that include conditional deallocation and relocation
of pointer dereferences. Other relevant tools either face scalability problems [25] or have a low
repair rate [16]. Xu et al. proposed VFix [47], a value-flow-guided APR approach to repair null
pointer dereferences using data and control dependency analysis. Finally, these approaches are
fundamentally different from our approach because these approaches lack proactive vulnerability
detection and repair. For example, CrashRepair can be combined with a fuzzer to detect and repair
vulnerabilities. Besides, most of the generated repairs are crash-avoiding repairs; such repairs make
the code hard to maintain later.

6.5 Repair of Buffer and Integer Overflows

Various approaches [9, 10, 26, 28, 29, 33, 40] have been proposed to combat overflow-related
vulnerabilities. For example, IntRepair [33] targets integer overflows. However, it uses symbolic
execution and SMT solver to reason about the repair and thus suffers the path explosion issues.
Cheng et al. [9] proposed IntPTI, an APR approach to support developers in improving code
quality against integer errors. They use a static value analysis to achieve proper-type inference
for expressions and variables. These inferred types are utilized to generate template-based repairs
deduced from common fix patterns. Long et al. [28, 29] use static analysis to generate sound input
filters that avoid subsequent integer overflows [10, 40] describe transformation templates that can
be applied for fixing buffer and integer overflows in C programs. Such templates can be applied as
refactoring rules. Logozzo et al. [26] synthesize non-overflowing integer arithmetic expressions
leveraging numerical properties that had been inferred with abstract interpretation. Unlike these
approaches, CrashRepair does not rely on static analysis, templates, or abstract interpretation.
Instead, we leverage efficient concolic execution guided by a concrete input to identify fix locations
for which we extract repair constraints that guide source-code level mutations.

, Vol. 1, No. 1, Article . Publication date: November 2024.

Vulnerability Repair via

Concolic Execution and Code Mutations 25

7 CONCLUSION

In this work, we propose CrashRepair, the combination of semantic analysis and search-based
patch generation for the repair of security vulnerabilities. The semantic analysis produces a set of
fix locations with corresponding repair constraints. The search-based repair operators are steered
by the repair constraints and mutate statements at the identified fix locations. Experimental results
show the successful combination of semantic analysis with search-based repair in our CrashRepair
engine for fixing security vulnerabilities.

Our tool and experiment setup is available via: https://github.com/nus-apr/CrashRepair and an
archived replication package is hosted in Zenodo at https://doi.org/10.5281/zenodo.13751398

ACKNOWLEDGMENTS

This work was partially supported by a Singapore Ministry of Education (MoE) Tier 3 grant
”Automated Program Repair”, MOE-MOET32021-0001.

This material is based on research sponsored by the Air Force Research Laboratory under agree-
ment number FA8750-19-1-0501. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements, either expressed or implied, of the Air
Force Research Laboratory or the U.S. Government.

REFERENCES

[1] 2017. American Fuzzy Lop (AFL) Fuzzer. http://lcamtuf.coredump.cx/afl/technical_details.txt. Accessed: 2023-10-17.
[2] 2023. Blog. https://blogs.gentoo.org/ago/2017/01/01/libtiff-multiple-heap-based-buffer-overflow/.
[3] 2023. LibTIFF Project. http://www.libtiff.org/.
[4] Andrea Arcuri and Lionel Briand. 2011. A practical guide for using statistical tests to assess randomized algorithms in

software engineering. In Proceedings of the 33rd International Conference on Software Engineering (Waikiki, Honolulu,
HI, USA) (ICSE ’11). Association for Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/198579
3.1985795

[5] Marcel Boehme, Cristian Cadar, and Abhik Roychoudhury. 2020. Fuzzing: Challenges and Reflections. IEEE Software

(2020), 0–0. https://doi.org/10.1109/ms.2020.3016773
[6] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unassisted and automatic generation of high-coverage

tests for complex systems programs.. In OSDI, Vol. 8. 209–224.
[7] Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter Hooimeijer, Martino Luca, Peter O’Hearn,

Irene Papakonstantinou, Jim Purbrick, and Dulma Rodriguez. 2015. Moving Fast with Software Verification. In NASA

Formal Methods, Klaus Havelund, Gerard Holzmann, and Rajeev Joshi (Eds.). Springer International Publishing, Cham,
3–11.

[8] Zimin Chen, Steve Kommrusch, and Martin Monperrus. 2023. Neural Transfer Learning for Repairing Security
Vulnerabilities in C Code. IEEE Transactions on Software Engineering 49, 1 (2023), 147–165. https://doi.org/10.1109/TS
E.2022.3147265

[9] Xi Cheng, Min Zhou, Xiaoyu Song, Ming Gu, and Jiaguang Sun. 2017. IntPTI: Automatic integer error repair with
proper-type inference. In 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE).
996–1001. https://doi.org/10.1109/ASE.2017.8115718

[10] Zack Coker and Munawar Hafiz. 2013. Program transformations to fix C integers. In 2013 35th International Conference

on Software Engineering (ICSE). 792–801. https://doi.org/10.1109/ICSE.2013.6606625
[11] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the Theory and Practice of

Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340.

[12] Zhen Yu Ding and Claire Le Goues. 2021. An Empirical Study of OSS-Fuzz Bugs. CoRR abs/2103.11518 (2021).
arXiv:2103.11518 https://arxiv.org/abs/2103.11518

[13] Zhen Yu Ding and Claire Le Goues. 2021. An Empirical Study of OSS-Fuzz Bugs. arXiv preprint arXiv:2103.11518

(2021).

, Vol. 1, No. 1, Article . Publication date: November 2024.

https://github.com/nus-apr/CrashRepair
https://doi.org/10.5281/zenodo.13751398
http://lcamtuf.coredump.cx/ afl/technical_details.txt
https://doi.org/10.1145/1985793.1985795
https://doi.org/10.1145/1985793.1985795
https://doi.org/10.1109/ms.2020.3016773
https://doi.org/10.1109/TSE.2022.3147265
https://doi.org/10.1109/TSE.2022.3147265
https://doi.org/10.1109/ASE.2017.8115718
https://doi.org/10.1109/ICSE.2013.6606625
http://arxiv.org/abs/2103.11518
https://arxiv.org/abs/2103.11518

26 Shariffdeen et al.

[14] Xiaoning Du, Bihuan Chen, Yuekang Li, Jianmin Guo, Yaqin Zhou, Yang Liu, and Yu Jiang. 2019. LEOPARD: Identify-
ing Vulnerable Code for Vulnerability Assessment Through Program Metrics. In 2019 IEEE/ACM 41st International

Conference on Software Engineering (ICSE). 60–71. https://doi.org/10.1109/ICSE.2019.00024
[15] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Phung. 2022. VulRepair: a T5-based

automated software vulnerability repair. In Proceedings of the 30th ACM Joint European Software Engineering Con-

ference and Symposium on the Foundations of Software Engineering (<conf-loc>, <city>Singapore</city>, <coun-
try>Singapore</country>, </conf-loc>) (ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA,
935–947. https://doi.org/10.1145/3540250.3549098

[16] Qing Gao, Yingfei Xiong, Yaqing Mi, Lu Zhang, Weikun Yang, Zhaoping Zhou, Bing Xie, and Hong Mei. 2015. Safe
Memory-Leak Fixing for C Programs. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
Vol. 1. 459–470. https://doi.org/10.1109/ICSE.2015.64

[17] Xiang Gao, Bo Wang, Gregory J. Duck, Ruyi Ji, Yingfei Xiong, and Abhik Roychoudhury. 2021. Beyond Tests: Program
Vulnerability Repair via Crash Constraint Extraction. ACM Trans. Softw. Eng. Methodol. 30, 2, Article 14 (Feb. 2021),
27 pages. https://doi.org/10.1145/3418461

[18] Mark Harman and Peter O’Hearn. 2018. From Start-ups to Scale-ups: Opportunities and Open Problems for Static
and Dynamic Program Analysis. In 2018 IEEE 18th International Working Conference on Source Code Analysis and

Manipulation (SCAM). 1–23. https://doi.org/10.1109/SCAM.2018.00009
[19] Seongjoon Hong, Junhee Lee, Jeongsoo Lee, and Hakjoo Oh. 2020. SAVER: Scalable, Precise, and Safe Memory-Error

Repair. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South Korea) (ICSE
’20). Association for Computing Machinery, New York, NY, USA, 271–283. https://doi.org/10.1145/3377811.3380323

[20] Pieter Hooimeijer and Westley Weimer. 2007. Modeling Bug Report Quality. In Proceedings of the Twenty-Second

IEEE/ACM International Conference on Automated Software Engineering (Atlanta, Georgia, USA) (ASE ’07). Association
for Computing Machinery, New York, NY, USA, 34–43. https://doi.org/10.1145/1321631.1321639

[21] Z. Huang, D. Lie, G. Tan, and T. Jaeger. 2019. Using Safety Properties to Generate Vulnerability Patches. In 2019 IEEE

Symposium on Security and Privacy (SP). 539–554. https://doi.org/10.1109/SP.2019.00071
[22] Yiğit Küçük, Tim A. D. Henderson, and Andy Podgurski. 2021. Improving Fault Localization by Integrating Value and

Predicate Based Causal Inference Techniques. In 2021 IEEE/ACM 43rd International Conference on Software Engineering

(ICSE). 649–660. https://doi.org/10.1109/ICSE43902.2021.00066
[23] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. 2012. GenProg: A Generic Method for Automatic Software Repair.

IEEE Transactions on Software Engineering 38, 1 (Jan 2012), 54–72. https://doi.org/10.1109/TSE.2011.104
[24] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated Program Repair. Commun. ACM 62, 12

(Nov. 2019), 56–65. https://doi.org/10.1145/3318162
[25] Junhee Lee, Seongjoon Hong, and Hakjoo Oh. 2018. MemFix: Static Analysis-Based Repair of Memory Deallocation

Errors for C. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association for
Computing Machinery, New York, NY, USA, 95–106. https://doi.org/10.1145/3236024.3236079

[26] Francesco Logozzo and Matthieu Martel. 2013. Automatic Repair of Overflowing Expressions with Abstract Interpreta-
tion. Electronic Proceedings in Theoretical Computer Science 129 (Sep 2013), 341–357. https://doi.org/10.4204/eptcs.129.21

[27] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning Correct Code. In Proceedings of the 43rd

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St. Petersburg, FL, USA) (POPL
’16). Association for Computing Machinery, New York, NY, USA, 298–312. https://doi.org/10.1145/2837614.2837617

[28] Fan Long, Stelios Sidiroglou-Douskos, Deokhwan Kim, and Martin Rinard. 2014. Sound Input Filter Generation for
Integer Overflow Errors. SIGPLAN Not. 49, 1 (Jan. 2014), 439–452. https://doi.org/10.1145/2578855.2535888

[29] Fan Long, Stelios Sidiroglou-Douskos, Deokhwan Kim, and Martin Rinard. 2014. Sound Input Filter Generation for
Integer Overflow Errors. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (San Diego, California, USA) (POPL ’14). Association for Computing Machinery, New York, NY, USA,
439–452. https://doi.org/10.1145/2535838.2535888

[30] Sergey Mechtaev, Xiang Gao, Shin Hwei Tan, and Abhik Roychoudhury. 2018. Test-equivalence Analysis for Automatic
Patch Generation. ACM Transactions on Software Engineering and Methodology (TOSEM) 27 (2018). Issue 4.

[31] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable Multiline Program Patch Synthesis
via Symbolic Analysis. In 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE). 691–701.
https://doi.org/10.1145/2884781.2884807

[32] Barton P Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study of the Reliability of UNIX Utilities. Commun.

ACM 33, 12 (dec 1990), 32–44. https://doi.org/10.1145/96267.96279
[33] Paul Muntean, Martin Monperrus, Hao Sun, Jens Grossklags, and Claudia Eckert. 2019. IntRepair: Informed Repairing

of Integer Overflows. IEEE Transactions on Software Engineering (2019), 1–1. https://doi.org/10.1109/TSE.2019.2946148

, Vol. 1, No. 1, Article . Publication date: November 2024.

https://doi.org/10.1109/ICSE.2019.00024
https://doi.org/10.1145/3540250.3549098
https://doi.org/10.1109/ICSE.2015.64
https://doi.org/10.1145/3418461
https://doi.org/10.1109/SCAM.2018.00009
https://doi.org/10.1145/3377811.3380323
https://doi.org/10.1145/1321631.1321639
https://doi.org/10.1109/SP.2019.00071
https://doi.org/10.1109/ICSE43902.2021.00066
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3236024.3236079
https://doi.org/10.4204/eptcs.129.21
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1145/2578855.2535888
https://doi.org/10.1145/2535838.2535888
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1145/96267.96279
https://doi.org/10.1109/TSE.2019.2946148

Vulnerability Repair via

Concolic Execution and Code Mutations 27

[34] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. 2013. SemFix: Program repair via semantic analysis. In 2013

35th International Conference on Software Engineering (ICSE). 772–781. https://doi.org/10.1109/ICSE.2013.6606623
[35] Yannic Noller, Ridwan Shariffdeen, Xiang Gao, and Abhik Roychoudhury. 2022. Trust Enhancement Issues in Program

Repair. In Proceedings of the 44th International Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 2228–2240. https://doi.org/10.1145/3510003.3510040

[36] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jaspan. 2018. Lessons from Building
Static Analysis Tools at Google. Commun. ACM 61, 4 (March 2018), 58–66. https://doi.org/10.1145/3188720

[37] Koushik Sen. 2007. Concolic Testing. In Proceedings of the Twenty-Second IEEE/ACM International Conference on

Automated Software Engineering (Atlanta, Georgia, USA) (ASE ’07). Association for Computing Machinery, New York,
NY, USA, 571–572. https://doi.org/10.1145/1321631.1321746

[38] Ridwan Shariffdeen, Martin Mirchev, Yannic Noller, and Abhik Roychoudhury. 2023. Cerberus: a Program Repair
Framework. In 2023 IEEE/ACM 45th International Conference on Software Engineering: Companion Proceedings (ICSE-

Companion). 73–77. https://doi.org/10.1109/ICSE-Companion58688.2023.00028
[39] Ridwan Shariffdeen, Yannic Noller, Lars Grunske, and Abhik Roychoudhury. 2021. Concolic Program Repair. In

Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation

(PLDI 2021). Association for Computing Machinery, New York, NY, USA, 390–405. https://doi.org/10.1145/3453483.34
54051

[40] Alex Shaw, Dusten Doggett, and Munawar Hafiz. 2014. Automatically Fixing C Buffer Overflows Using Program
Transformations. In 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. 124–135.
https://doi.org/10.1109/DSN.2014.25

[41] Shiqi Shen, Aashish Kolluri, Zhen Dong, Prateek Saxena, and Abhik Roychoudhury. 2021. Localizing Vulnerabilities
Statistically From One Exploit. In Proceedings of the 2021 ACM Asia Conference on Computer and Communications

Security (Virtual Event, Hong Kong) (ASIA CCS ’21). Association for Computing Machinery, New York, NY, USA,
537–549. https://doi.org/10.1145/3433210.3437528

[42] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the Cure Worse than the Disease? Overfitting
in Automated Program Repair. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering

(Bergamo, Italy) (ESEC/FSE 2015). Association for Computing Machinery, New York, NY, USA, 532–543. https:
//doi.org/10.1145/2786805.2786825

[43] Christopher Timperley et al. [n. d.]. Darjeeling: language agnostic search-based repair tool. https://github.com/squar
esLab/Darjeeling.

[44] Rijnard van Tonder and Claire Le Goues. 2018. Static Automated Program Repair for Heap Properties. In Proceedings of

the 40th International Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18). Association for Computing
Machinery, New York, NY, USA, 151–162. https://doi.org/10.1145/3180155.3180250

[45] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A Survey on Software Fault Localization.
IEEE Transactions on Software Engineering 42, 8 (2016), 707–740. https://doi.org/10.1109/TSE.2016.2521368

[46] Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan, Petr Babkin, and Sameena Shah. 2023.
How Effective Are Neural Networks for Fixing Security Vulnerabilities (ISSTA 2023). Association for Computing
Machinery, New York, NY, USA, 1282–1294. https://doi.org/10.1145/3597926.3598135

[47] Xuezheng Xu, Yulei Sui, Hua Yan, and Jingling Xue. 2019. VFix: Value-Flow-Guided Precise Program Repair for Null
Pointer Dereferences. In Proceedings of the 41st International Conference on Software Engineering (Montreal, Quebec,
Canada) (ICSE ’19). IEEE Press, 512–523. https://doi.org/10.1109/ICSE.2019.00063

[48] Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. 2018. Spatio-Temporal Context Reduction: A Pointer-Analysis-
Based Static Approach for Detecting Use-After-Free Vulnerabilities. In 2018 IEEE/ACM 40th International Conference on

Software Engineering (ICSE). 327–337. https://doi.org/10.1145/3180155.3180178
[49] Yuntong Zhang, Xiang Gao, Gregory J. Duck, and Abhik Roychoudhury. 2022. Program Vulnerability Repair via

Inductive Inference. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis

(Virtual, South Korea) (ISSTA 2022). Association for Computing Machinery, New York, NY, USA, 691–702. https:
//doi.org/10.1145/3533767.3534387

[50] Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D. Ernst, and Lu Zhang. 2021. An Empirical Study of Fault
Localization Families and Their Combinations. IEEE Transactions on Software Engineering 47, 2 (2021), 332–347.
https://doi.org/10.1109/TSE.2019.2892102

, Vol. 1, No. 1, Article . Publication date: November 2024.

https://doi.org/10.1109/ICSE.2013.6606623
https://doi.org/10.1145/3510003.3510040
https://doi.org/10.1145/3188720
https://doi.org/10.1145/1321631.1321746
https://doi.org/10.1109/ICSE-Companion58688.2023.00028
https://doi.org/10.1145/3453483.3454051
https://doi.org/10.1145/3453483.3454051
https://doi.org/10.1109/DSN.2014.25
https://doi.org/10.1145/3433210.3437528
https://doi.org/10.1145/2786805.2786825
https://doi.org/10.1145/2786805.2786825
https://github.com/squaresLab/Darjeeling
https://github.com/squaresLab/Darjeeling
https://doi.org/10.1145/3180155.3180250
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1145/3597926.3598135
https://doi.org/10.1109/ICSE.2019.00063
https://doi.org/10.1145/3180155.3180178
https://doi.org/10.1145/3533767.3534387
https://doi.org/10.1145/3533767.3534387
https://doi.org/10.1109/TSE.2019.2892102

	Abstract
	1 Introduction
	2 Motivational Example
	3 Approach
	3.1 Constraint Generation
	3.2 Fix Localization
	3.3 Constraint Translation
	3.4 Patch Generation
	3.5 Patch Validation
	3.6 Ranking

	4 Evaluation
	4.1 Implementation Details
	4.2 Experimental Setup
	4.3 Fix Localization and Repair Constraints
	4.4 Fixing Security Vulnerabilities
	4.5 Repair Operators
	4.6 Comparison with the State of the Art
	4.7 Threats to Validity

	5 Discussion
	5.1 Vulnerability Detection in KLEE
	5.2 Repair Operators in CrashRepair

	6 Related Work
	6.1 Security Vulnerability Detection
	6.2 Fault Localization for Vulnerabilities
	6.3 Program Repair related to Vulnerabilities
	6.4 Repair of Memory Errors
	6.5 Repair of Buffer and Integer Overflows

	7 Conclusion
	References

